Beyond Polydimethylsiloxane: Alternative Materials for Fabrication of Organ-on-a-Chip Devices and Microphysiological Systems

被引:201
作者
Campbell, Scott B. [1 ]
Wu, Qinghua [1 ]
Yazbeck, Joshua [2 ]
Liu, Chuan [1 ]
Okhovatian, Sargol [2 ]
Radisic, Milica [1 ,2 ,3 ]
机构
[1] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON M5S 3G9, Canada
[2] Univ Toronto, Dept Chem Engn & Appl Chem, Toronto, ON M5S 3E5, Canada
[3] Univ Hlth Network, Toronto Gen Hosp, Res Inst, Toronto, ON M5G 2C4, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院; 美国国家卫生研究院;
关键词
biomaterials; organ-on-a-chip; microphysiological systems; drug testing; microfabrication; PDMS-free; hydrogels; elastomers; glass; silicon; thermoplastic polymers; polydimethylsiloxane; CELL-CULTURE; 3D CULTURE; MICROFLUIDIC DEVICES; IN-VITRO; SCAFFOLDS; PLATFORM; PDMS; ABSORPTION; MODEL; DESIGN;
D O I
10.1021/acsbiomaterials.0c00640
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Polydimethylsiloxane (PDMS) is the predominant material used for organon-a-chip devices and microphysiological systems (MPSs) due to its ease-of-use, elasticity, optical transparency, and inexpensive microfabrication. However, the absorption of small hydrophobic molecules by PDMS and the limited capacity for high-throughput manufacturing of PDMS-laden devices severely limit the application of these systems in personalized medicine, drug discovery, in vitro pharmacokinetic/pharmacodynamic (PK/PD) modeling, and the investigation of cellular responses to drugs. Consequently, the relatively young field of organ-on-a-chip devices and MPSs is gradually beginning to make the transition to alternative, nonabsorptive materials for these crucial applications. This review examines some of the first steps that have been made in the development of organon-a-chip devices and MPSs composed of such alternative materials, including elastomers, hydrogels, thermoplastic polymers, and inorganic materials. It also provides an outlook on where PDMS-alternative devices are trending and the obstacles that must be overcome in the development of versatile devices based on alternative materials to PDMS.
引用
收藏
页码:2880 / 2899
页数:20
相关论文
共 165 条
[1]   Lab-on-chip technologies:: making a microfluidic network and coupling it into a complete microsystem -: a review [J].
Abgrall, P. ;
Gue, A-M .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (05) :R15-R49
[2]   Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies [J].
Ahadian, Samad ;
Civitarese, Robert ;
Bannerman, Dawn ;
Mohammadi, Mohammad Hossein ;
Lu, Rick ;
Wang, Erika ;
Davenport-Huyer, Locke ;
Lai, Ben ;
Zhang, Boyang ;
Zhao, Yimu ;
Mandla, Serena ;
Korolj, Anastasia ;
Radisic, Milica .
ADVANCED HEALTHCARE MATERIALS, 2018, 7 (02)
[3]   3D microfluidics via cyclic olefin polymer-based in situ direct laser writing [J].
Alsharhan, Abdullah T. ;
Acevedo, Ruben ;
Warren, Roseanne ;
Sochol, Ryan D. .
LAB ON A CHIP, 2019, 19 (17) :2799-2810
[4]   Micromachining of Polyurethane Membranes for Tissue Engineering Applications [J].
Arefin, Ayesha ;
Mcculloch, Quinn ;
Martinez, Ricardo ;
Martin, Simona A. ;
Shing, Rohan ;
Ishak, Omar M. ;
Higgins, Erin M. ;
Haffey, Kiersten E. ;
Huang, Jen-Huang ;
Iyer, Srinivas ;
Nath, Pulak ;
Iyer, Rashi ;
Harris, Jennifer F. .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2018, 4 (10) :3522-3533
[5]   SU-8 based microdevices to study self-induced chemotaxis in 3D microenvironments [J].
Ayuso, Jose Maria ;
Mongel, Rosa ;
Llamazares, Guillermo A. ;
Moreno, Marco ;
Agirregabiria, Maria ;
Bergamo, Javier ;
Doblare, Manuel ;
Ochoa, Lnaki ;
Fernandez, Luis J. .
FRONTIERS IN MATERIALS, 2015, 2
[6]   3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization [J].
Babilotte, Joanna ;
Guduric, Vera ;
Le Nihouannen, Damien ;
Naveau, Adrien ;
Fricain, Jean-Christophe ;
Catros, Sylvain .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2019, 107 (08) :2579-2595
[7]   Single-cell Raman microscopy of microengineered cell scaffolds [J].
Baldock, Sara J. ;
Talari, Abdullah C. S. ;
Smith, Rachael ;
Wright, Karen L. ;
Ashton, Lorna .
JOURNAL OF RAMAN SPECTROSCOPY, 2019, 50 (03) :371-379
[8]   A thermoplastic microfluidic microphysiological system to recapitulate hepatic function and multicellular interactions [J].
Bale, Shyam Sundhar ;
Manoppo, Andrea ;
Thompson, Rebecca ;
Markoski, Alex ;
Coppeta, Jonathan ;
Cain, Brian ;
Haroutunian, Nerses ;
Newlin, Veronica ;
Spencer, Abbie ;
Azizgolshani, Hesham ;
Lu, Mingjian ;
Gosset, James ;
Keegan, Philip ;
Charest, Joseph L. .
BIOTECHNOLOGY AND BIOENGINEERING, 2019, 116 (12) :3409-3420
[9]   In Situ Production and Application of Cellulose Nanofibers to Improve Recycled Paper Production [J].
Balea, Ana ;
Luis Sanchez-Salvador, Jose ;
Concepcion Monte, M. ;
Merayo, Noemi ;
Negro, Carlos ;
Blanco, Angeles .
MOLECULES, 2019, 24 (09)
[10]   Development of a Gut-on-a-Chip Model for High Throughput Disease Modeling and Drug Discovery [J].
Beaurivage, Claudia ;
Naumovska, Elena ;
Chang, Yee Xiang ;
Elstak, Edo D. ;
Nicolas, Arnaud ;
Wouters, Heidi ;
van Moolenbroek, Guido ;
Lanz, Henriette L. ;
Trietsch, Sebastiaan J. ;
Joore, Jos ;
Vulto, Paul ;
Janssen, Richard A. J. ;
Erdmann, Kai S. ;
Stallen, Jan ;
Kurek, Dorota .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (22)