The Recognition Theorem for Out(Fn)

被引:36
作者
Feighnand, Mark [1 ]
Handel, Michael [2 ]
机构
[1] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
[2] CUNY Herbert H Lehman Coll, Dept Math & Comp Sci, Bronx, NY 10468 USA
基金
美国国家科学基金会;
关键词
Outer automorphisms; free group; AUTOMORPHISMS; DYNAMICS; LAMINATIONS; SUBGROUPS; NIELSEN; SETS;
D O I
10.4171/GGD/116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our goal is to find dynamic invariants that completely determine elements of the outer automorphism group Out (F-n) of the free group F-n of rank n. To avoid finite order phenomena, we do this for forward rotationless elements. This is not a serious restriction. For example, there is K-n > 0 depending only on n such that, for all phi is an element of Out(F-n), phi(Kn) is forward rotationless. An important part of our analysis is to show that rotationless elements are represented by particularly nice relative train track maps.
引用
收藏
页码:39 / 106
页数:68
相关论文
共 18 条
[1]   The Tits alternative for out(Fn) I:: Dynamics of exponentially-growing automorphisms [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
ANNALS OF MATHEMATICS, 2000, 151 (02) :517-623
[2]   TRAIN TRACKS AND AUTOMORPHISMS OF FREE GROUPS [J].
BESTVINA, M ;
HANDEL, M .
ANNALS OF MATHEMATICS, 1992, 135 (01) :1-51
[3]   Solvable subgroups of Out(Fn) are virtually Abelian [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIAE DEDICATA, 2004, 104 (01) :71-96
[4]   Laminations, trees, and irreducible automorphisms of free groups [J].
Bestvina, M ;
Feighn, M ;
Handel, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1997, 7 (02) :215-244
[5]   The conjugacy problem for Dehn twist automorphisms of free groups [J].
Cohen, MM ;
Lustig, M .
COMMENTARII MATHEMATICI HELVETICI, 1999, 74 (02) :179-200
[6]   AUTOMORPHISMS OF FREE GROUPS HAVE FINITELY GENERATED FIXED-POINT SETS [J].
COOPER, D .
JOURNAL OF ALGEBRA, 1987, 111 (02) :453-456
[7]  
Culler Cul84 Marc, 1984, Contemp. Math., V33, P197, DOI [10.1090/conm/033/767107, DOI 10.1090/CONM/033/767107]
[8]   Abelian subgroups of Out (Fn) [J].
Feighn, Mark ;
Handel, Michael .
GEOMETRY & TOPOLOGY, 2009, 13 :1657-1727
[9]   GROUP-COMPLETIONS AND LIMIT-SETS OF KLEINIAN-GROUPS [J].
FLOYD, WJ .
INVENTIONES MATHEMATICAE, 1980, 57 (03) :205-218
[10]   An index for counting fixed points of automorphisms of free groups [J].
Gaboriau, D ;
Jaeger, A ;
Levitt, G ;
Lustig, M .
DUKE MATHEMATICAL JOURNAL, 1998, 93 (03) :425-452