Cubic spline coalescence fractal interpolation through moments

被引:14
作者
Chand, A. K. B. [1 ]
Kapoor, G. P. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kanpur 208016, Uttar Pradesh, India
关键词
iterated function systems; fractal interpolation functions; coalescence; cubic spline; moments; self-affine; non-self-affine; convergence;
D O I
10.1142/S0218348X07003381
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper generalizes the classical cubic spline with the construction of the cubic spline coalescence hidden variable fractal interpolation function (CHFIF) through its moments, i.e. its second derivative at the mesh points. The second derivative of a cubic spline CHFIF is a typical fractal function that is self-affine or non-self-affine depending on the parameters of the generalized iterated function system. The convergence results and effects of hidden variables are discussed for cubic spline CHFIFs.
引用
收藏
页码:41 / 53
页数:13
相关论文
共 22 条
[1]  
Ahlberg JH., 1967, The Theory of Splines and Their Applications
[2]  
[Anonymous], FRACTALS GRAPHICS MA
[3]  
[Anonymous], THESIS IIT KANPUR
[4]  
Barnsley M., 1988, FRACTALS EVERYWHERE
[5]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[6]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[7]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[8]   Generalized cubic spline fractal interpolation functions [J].
Chand, A. K. B. ;
Kapoor, G. P. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :655-676
[9]   Hidden variable bivariate fractal interpolation surfaces [J].
Chand, AKB ;
Kapoor, GP .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2003, 11 (03) :277-288
[10]  
FEDER J, 1988, FRACALS