New exact solutions for nonlinear Klein-Gordon equations

被引:10
作者
Han, ZX [1 ]
机构
[1] Zhejiang Gongshang Univ, Coll Stat & Comp Sci, Hangzhou 310035, Peoples R China
关键词
Jacobi elliptic function; nonlinear evolution equation; exact solution;
D O I
10.7498/aps.54.1481
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the travelling wave transformation instead of the more general function transformation, the modified Jacobi elliptic function expansion method is improved. Some new periodic solutions of nolinear Klein-Gordon equation are obtained using this method. When modulus m -> 1 or m -> 0, these periodic solutions degenerate to the corresponding solitary wave solutions, trigonometric function solutions or irregular travelling wave solutions. For some nonlinear equations I the general transformation would degenerate to the travelling wave reduction under certain conditions.
引用
收藏
页码:1481 / 1484
页数:4
相关论文
共 17 条
[1]   Explicit exact solutions of generalized B-BBM and B-BBM equations [J].
Chen, SL ;
Hou, WG .
ACTA PHYSICA SINICA, 2001, 50 (10) :1842-1845
[2]   Improved tanh-function method and the new exact solutions for the general variable coefficient KdV equation and MKdV equation [J].
Li, DS ;
Zhang, HQ .
ACTA PHYSICA SINICA, 2003, 52 (07) :1569-1573
[3]   Jacobi elliptic function expansion method under a general function transform and its applications [J].
Liu, GT ;
Fan, TY .
ACTA PHYSICA SINICA, 2004, 53 (03) :676-679
[4]   The envelope periodic solutions to nonlinear wave equations with Jacobi elliptic function [J].
Liu, SD ;
Fu, ZT ;
Liu, SK ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (04) :718-722
[5]   Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (09) :1923-1926
[6]   New periodic solutions to a kind of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2002, 51 (01) :10-14
[7]   Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
ACTA PHYSICA SINICA, 2001, 50 (11) :2068-2073
[8]   Exact periodic solutions of the complex Ginzburg-Landau equation [J].
Porubov, AV ;
Velarde, MG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :884-896
[9]   Periodical solution to the nonlinear dissipative equation for surface waves in a convecting liquid layer [J].
Porubov, AV .
PHYSICS LETTERS A, 1996, 221 (06) :391-394
[10]   New exact solutions of a new (2+1)-dimensional integrable system [J].
Shen, SF ;
Pan, ZL ;
Zhang, J ;
Cai'er, Y .
PHYSICS LETTERS A, 2004, 325 (3-4) :226-232