An ensemble deep learning method as data fusion system for remote sensing multisensor classification

被引:35
|
作者
Bigdeli, Behnaz [1 ]
Pahlavani, Parham [2 ]
Amirkolaee, Hamed Amini [2 ]
机构
[1] Shahrood Univ Technol, Sch Civil Engn, POB 3619995161, Shahrood, Iran
[2] Univ Tehran, Coll Engn, Sch Surveying & Geospatial Engn, Tehran, Iran
关键词
Deep learning; CNN; Ensemble learning; Data fusion; Remote sensing; Diversity; LIDAR DATA; DIVERSITY;
D O I
10.1016/j.asoc.2021.107563
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Because of the great achievements in designing remote sensing sensors, the extraction of useful information from multisource remote sensing data remains a challenging problem. Most of the recent research projects have applied single deep learning systems for data fusion and classification. The idea of using ensemble deep learning algorithms through a multisensor fusion system can improve the performance of data fusion tasks. In this research, however, a multi-sensor classification strategy, which is based on deep learning ensemble procedure and decision fusion framework, is investigated for the fusion of Light Detection and Ranging (LiDAR), Hyperspectral Images (HS), and very high-resolution Visible (Vis) images. This research proposes a basic classifier based on deep Convolutional Neural Network (CNN) in which the softmax layer is replaced by a Support Vector Machine (CNN-SVM). Then, a random feature selection is applied to generate two separate CNN-SVM ensemble systems, one for LiDAR and Vis and the other one for HS data. To overcome the similarity and overfitting between the deep features and the classifiers provided by two ensemble systems and to select the best subsets of the classifiers, two diversity measures select the most diverse combinations of the classifiers. Finally, a decision fusion method combines the obtained diverse classifiers from CNN ensembles. Results demonstrate that the proposed method achieves higher accuracy, and its performance outperforms some of the existing methods. The proposed ensemble CNN method improved single deep CNN, random forest, and Adaboost between 2% to 10% in terms of classification accuracy. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Ensemble Learning with Decision Tree for Remote Sensing Classification
    Pal, Mahesh
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 26, PARTS 1 AND 2, DECEMBER 2007, 2007, 26 : 735 - 737
  • [23] A Novel Approach to Incomplete Multimodal Learning for Remote Sensing Data Fusion
    Chen, Yuxing
    Zhao, Maofan
    Bruzzone, Lorenzo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [24] A Deep Learning Framework Approach for Urban Area Classification Using Remote Sensing Data
    Nijhawan, Rahul
    Jindal, Radhika
    Sharma, Himanshu
    Raman, Balasubramanian
    Das, Josodhir
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON COMPUTER VISION AND IMAGE PROCESSING, CVIP 2018, VOL 1, 2020, 1022 : 449 - 456
  • [25] Multisource Remote Sensing Data Classification With Graph Fusion Network
    Du, Xingqian
    Zheng, Xiangtao
    Lu, Xiaoqiang
    Doudkin, Alexander A.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10062 - 10072
  • [26] Remote Fingerprinting and Multisensor Data Fusion
    Hunter, Samuel Oswald
    Stalmans, Etienne
    Irwin, Barry
    Richter, John
    2012 INFORMATION SECURITY FOR SOUTH AFRICA (ISSA), 2012,
  • [27] Land Cover Classification From VHR Optical Remote Sensing Images by Feature Ensemble Deep Learning Network
    Dong, Shan
    Zhuang, Yin
    Yang, Zhanxin
    Pang, Long
    Chen, He
    Long, Teng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (08) : 1396 - 1400
  • [28] Deep Learning for LiDAR Point Cloud Classification in Remote Sensing
    Diab, Ahmed
    Kashef, Rasha
    Shaker, Ahmed
    SENSORS, 2022, 22 (20)
  • [29] Deep Learning Analysis for Big Remote Sensing Image Classification
    Chebbi, Imen
    Mellouli, Nedra
    Lamolle, Myriam
    Farah, Imed
    KDIR: PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE DISCOVERY, KNOWLEDGE ENGINEERING AND KNOWLEDGE MANAGEMENT - VOL 1: KDIR, 2019, : 355 - 362
  • [30] A Review on Image Classification of Remote Sensing Using Deep Learning
    Yao, Chuchu
    Luo, Xianxian
    Zhao, Yudan
    Zeng, Wei
    Chen, Xiaoyu
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1947 - 1955