Mathematical modelling and analysis of the brassinosteroid and gibberellin signalling pathways and their interactions

被引:11
作者
Allen, Henry R. [1 ]
Ptashnyk, Mariya [1 ,2 ]
机构
[1] Univ Dundee, Dept Math, Fulton Bldg, Dundee DD1 4HN, Scotland
[2] Heriot Watt Univ, Sch Math & Comp Sci, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Plant modelling; Hormone crosstalk signalling; Homeostasis in plants; Stability analysis and Hopf bifurcation; PDE-ODE systems; PLANT-GROWTH; HYPOCOTYL ELONGATION; ARABIDOPSIS-THALIANA; CELL ELONGATION; DELLA PROTEINS; ROOT-GROWTH; RECEPTOR; METABOLISM; AUXIN; BIOSYNTHESIS;
D O I
10.1016/j.jtbi.2017.08.013
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The plant hormones brassinosteroid (BR) and gibberellin (GA) have important roles in a wide range of processes involved in plant growth and development. In this paper we derive and analyse new mathematical models for the BR signalling pathway and for the crosstalk between the BR and GA signalling pathways. To analyse the effects of spatial heterogeneity of the signalling processes, along with spatially homogeneous ODE models we derive coupled PDE-ODE systems modelling the temporal and spatial dynamics of molecules involved in the signalling pathways. The values of the parameters in the model for the BR signalling pathway are determined using experimental data on the gene expression of BR biosynthetic enzymes. The stability of steady state solutions of our mathematical model, shown for a wide range of parameters, can be related to the BR homeostasis which is essential for proper function of plant cells. Solutions of the mathematical model for the BR signalling pathway can exhibit oscillatory behaviour only for relatively large values of parameters associated with transcription factor brassinazole-resistant1's (BZR) phosphorylation state, suggesting that this process may be important in governing the stability of signalling processes. Comparison between ODE and PDE-ODE models demonstrates distinct spatial distribution in the level of BR in the cell cytoplasm, however the spatial heterogeneity has significant effect on the dynamics of the averaged solutions only in the case when we have oscillations in solutions for at least one of the models, i.e. for possibly biologically not relevant parameter values. Our results for the crosstalk model suggest that the interaction between transcription factors BZR and DELLA exerts more influence on the dynamics of the signalling pathways than BZR-mediated biosynthesis of GA, suggesting that the interaction between transcription factors may constitute the principal mechanism of the crosstalk between the BR and GA signalling pathways. In general, perturbations in the GA signalling pathway have larger effects on the dynamics of components of the BR signalling pathway than perturbations in the BR signalling pathway on the dynamics of the GA pathway. The perturbation in the crosstalk mechanism also has a larger effect on the dynamics of the BR pathway than of the GA pathway. Large changes in the dynamics of the GA signalling processes can be observed only in the case where there are disturbances in both the BR signalling pathway and the crosstalk mechanism. Those results highlight the robustness of the GA signalling pathway. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 67 条
[1]   Releasing the brakes of plant growth: how GAs shutdown DELLA proteins [J].
Achard, P. ;
Genschik, P. .
JOURNAL OF EXPERIMENTAL BOTANY, 2009, 60 (04) :1085-1092
[2]   The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism [J].
Achard, Patrick ;
Gong, Fan ;
Cheminant, Soizic ;
Alioua, Malek ;
Hedden, Peter ;
Genschik, Pascal .
PLANT CELL, 2008, 20 (08) :2117-2129
[3]   Role of Brassinosteroid in Plant Adaptation to Abiotic Stresses and its Interplay with Other Hormones [J].
Ahammed, Golam J. ;
Xia, Xiao-Jian ;
Li, Xin ;
Shi, Kai ;
Yu, Jing-Quan ;
Zhou, Yan-Hong .
CURRENT PROTEIN & PEPTIDE SCIENCE, 2015, 16 (05) :462-473
[4]   Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1 [J].
Albrecht, Catherine ;
Boutrot, Freddy ;
Segonzac, Cecile ;
Schwessinger, Benjamin ;
Gimenez-Ibanez, Selena ;
Chinchilla, Delphine ;
Rathjen, John P. ;
de Vries, Sacco C. ;
Zipfel, Cyril .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (01) :303-308
[5]  
[Anonymous], 1990, An introduction to nonlinear analysis
[6]   Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis [J].
Bai, Ming-Yi ;
Shang, Jian-Xiu ;
Oh, Eunkyoo ;
Fan, Min ;
Bai, Yang ;
Zentella, Rodolfo ;
Sun, Tai-ping ;
Wang, Zhi-Yong .
NATURE CELL BIOLOGY, 2012, 14 (08) :810-U78
[7]   Effects of brassinosteroids on the plant responses to environmental stresses [J].
Bajguz, Andrzej ;
Hayat, Shamsul .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2009, 47 (01) :1-8
[8]   The molecular circuitry of brassinosteroid signaling [J].
Belkhadir, Youssef ;
Jaillais, Yvon .
NEW PHYTOLOGIST, 2015, 206 (02) :522-540
[9]   Control of specific gene expression by gibberellin and brassinosteroid [J].
Bouquin, T ;
Meier, C ;
Foster, R ;
Nielsen, ME ;
Mundy, J .
PLANT PHYSIOLOGY, 2001, 127 (02) :450-458
[10]   Brassinosteroids, microtubules and cell elongation in Arabidopsis thaliana.: II.: Effects of brassinosteroids on microtubules and cell elongation in the bul1 mutant [J].
Catterou, M ;
Dubois, F ;
Schaller, H ;
Aubanelle, L ;
Vilcot, B ;
Sangwan-Norreel, BS ;
Sangwan, RS .
PLANTA, 2001, 212 (5-6) :673-683