Stability analysis of first-order impulsive nonautonomous system on timescales

被引:16
作者
Zada, Akbar [1 ]
Pervaiz, Bakhtawar [1 ]
Shah, Syed Omar [2 ]
Xu, Jiafa [3 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] Qurtuba Univ Sci & Informat Technol Peshawar, Dept Phys & Numer Sci, Dera Ismail Khan, Pakistan
[3] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Banach fixed point theorem; dynamic system; impulses; timescale; semilinear nonautonomous system; beta-Ulam-Hyers stability; NONLINEAR DIFFERENTIAL-EQUATIONS; HYERS-ULAM STABILITY; DYNAMIC-SYSTEMS; TIME; DELAY;
D O I
10.1002/mma.6253
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this manuscript, we present the existence, uniqueness, beta-Ulam-Hyers stability, and beta-Ulam-Hyers-Rassias stability of semilinear nonautonomous impulsive dynamic systems on timescales, with the help of fixed point approach. We use Gronwall inequality on timescale, abstract Growall lemma, and Picard operator as basic tools to develop our main results. At the end, an example is given to demonstrate the validity of our main theoretical result.
引用
收藏
页码:5097 / 5113
页数:17
相关论文
共 41 条
[1]  
Agarwal R., 2014, ADV SCI ENG MED, V6, P1
[2]   Investigation of Ulam Stability Results of a Coupled System of Nonlinear Implicit Fractional Differential Equations [J].
Ali, Zeeshan ;
Kumam, Poom ;
Shah, Kamal ;
Zada, Akbar .
MATHEMATICS, 2019, 7 (04)
[3]   Ulam-Hyers stability of dynamic equations on time scales via Picard operators [J].
Andras, Szilard ;
Meszaros, Alpar Richard .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4853-4864
[4]  
[Anonymous], 2019, ADV ER EQU
[5]  
[Anonymous], 2009, SCI MATH JPN
[6]  
[Anonymous], 2010, ELECTRON J QUAL THEO
[7]  
Bainov D.D., 1989, Systems with Impulse Effect
[8]  
BAINOV DD, 1989, DOKL BOLG AKAD NAUK, V42, P29
[9]  
Bohner M., 2001, Dynamic Equations On Time Scales
[10]  
Bohner M., 2003, Advances in Dynamics Equations on Time Scales