Newly Identified CYP2C93 Is a Functional Enzyme in Rhesus Monkey, but Not in Cynomolgus Monkey

被引:22
作者
Uno, Yasuhiro [1 ]
Uehara, Shotaro [1 ]
Kohara, Sakae [1 ]
Iwasaki, Kazuhide [2 ]
Nagata, Ryoichi [1 ]
Fukuzaki, Koichiro [1 ]
Utoh, Masahiro [1 ]
Murayama, Norie [3 ]
Yamazaki, Hiroshi [3 ]
机构
[1] Shin Nippon Biomed Labs Ltd, Pharmacokinet & Bioanal Ctr, Kainan, Japan
[2] Shin Nippon Biomed Labs Ltd, Business Dev Dept, Osaka, Japan
[3] Showa Pharmaceut Univ, Lab Drug Metab & Pharmacokinet, Machida, Tokyo, Japan
关键词
MACACA-FASCICULARIS; ESCHERICHIA-COLI; CYTOCHROME-P450; CYP3A5; LIVER; EXPRESSION; VARIANTS; CLONING; HYDROXYLATION; TOLBUTAMIDE;
D O I
10.1371/journal.pone.0016923
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cynomolgus monkey and rhesus monkey are used in drug metabolism studies due to their evolutionary closeness and physiological resemblance to human. In cynomolgus monkey, we previously identified cytochrome P450 (P450 or CYP) 2C76 that does not have a human ortholog and is partly responsible for species differences in drug metabolism between cynomolgus monkey and human. In this study, we report characterization of CYP2C93 cDNA newly identified in cynomolgus monkey and rhesus monkey. The CYP2C93 cDNA contained an open reading frame of 490 amino acids approximately 84-86% identical to human CYP2Cs. CYP2C93 was located in the genomic region, which corresponded to the intergenic region in the human genome, indicating that CYP2C93 does not correspond to any human genes. CYP2C93 mRNA was expressed predominantly in the liver among 10 tissues analyzed. The CYP2C93 proteins heterologously expressed in Escherichia coli metabolized human CYP2C substrates, diclofenac, flurbiprofen, paclitaxel, S-mephenytoin, and tolbutamide. In addition to a normal transcript (SV1), an aberrantly spliced transcript (SV2) lacking exon 2 was identified, which did not give rise to a functional protein due to frameshift and a premature termination codon. Mini gene assay revealed that the genetic variant IVS2-1G>T at the splice site of intron 1, at least partly, accounted for the exon-2 skipping; therefore, this genotype would influence CYP2C93-mediated drug metabolism. SV1 was expressed in 6 of 11 rhesus monkeys and 1 of 8 cynomolgus monkeys, but the SV1 in the cynomolgus monkey was nonfunctional due to a rare null genotype (c.102T>del). These results suggest that CYP2C93 can play roles as a drug-metabolizing enzyme in rhesus monkeys (not in cynomolgus monkeys), although its relative contribution to drug metabolism has yet to be validated.
引用
收藏
页数:10
相关论文
共 27 条
[1]   Analysis of 10,000 ESTs from lymphocytes of the cynomolgus monkey to improve our understanding of its immune system [J].
Chen, Wei-Hua ;
Wang, Xue-Xia ;
Lin, Wei ;
He, Xiao-Wei ;
Wu, Zhen-Qiang ;
Lin, Ying ;
Hu, Song-Nian ;
Wang, Xiao-Ning .
BMC GENOMICS, 2006, 7 (1)
[2]   Evolutionary and biomedical insights from the rhesus macaque genome [J].
Gibbs, Richard A. ;
Rogers, Jeffrey ;
Katze, Michael G. ;
Bumgarner, Roger ;
Weinstock, George M. ;
Mardis, Elaine R. ;
Remington, Karin A. ;
Strausberg, Robert L. ;
Venter, J. Craig ;
Wilson, Richard K. ;
Batzer, Mark A. ;
Bustamante, Carlos D. ;
Eichler, Evan E. ;
Hahn, Matthew W. ;
Hardison, Ross C. ;
Makova, Kateryna D. ;
Miller, Webb ;
Milosavljevic, Aleksandar ;
Palermo, Robert E. ;
Siepel, Adam ;
Sikela, James M. ;
Attaway, Tony ;
Bell, Stephanie ;
Bernard, Kelly E. ;
Buhay, Christian J. ;
Chandrabose, Mimi N. ;
Dao, Marvin ;
Davis, Clay ;
Delehaunty, Kimberly D. ;
Ding, Yan ;
Dinh, Huyen H. ;
Dugan-Rocha, Shannon ;
Fulton, Lucinda A. ;
Gabisi, Ramatu Ayiesha ;
Garner, Toni T. ;
Godfrey, Jennifer ;
Hawes, Alicia C. ;
Hernandez, Judith ;
Hines, Sandra ;
Holder, Michael ;
Hume, Jennifer ;
Jhangiani, Shalini N. ;
Joshi, Vandita ;
Khan, Ziad Mohid ;
Kirkness, Ewen F. ;
Cree, Andrew ;
Fowler, R. Gerald ;
Lee, Sandra ;
Lewis, Lora R. ;
Li, Zhangwan .
SCIENCE, 2007, 316 (5822) :222-234
[3]   Clinical relevance of genetic polymorphisms in the human CYP2C subfamily [J].
Goldstein, JA .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2001, 52 (04) :349-355
[4]  
GOTOH O, 1992, J BIOL CHEM, V267, P83
[5]   The genetic determinants of the CYP3A5 polymorphism [J].
Hustert, E ;
Haberl, M ;
Burk, O ;
Wolbold, R ;
He, YQ ;
Klein, K ;
Nuessler, AC ;
Neuhaus, P ;
Klattig, J ;
Eiselt, R ;
Koch, I ;
Zibat, A ;
Brockmöller, J ;
Halpert, JR ;
Zanger, UM ;
Wojnowski, L .
PHARMACOGENETICS, 2001, 11 (09) :773-779
[6]   Relationship between CYP2C9 and 2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4'-hydroxylation activities in livers of Japanese and Caucasian populations [J].
Inoue, K ;
Yamazaki, H ;
Imiya, K ;
Akasaka, S ;
Guengerich, FP ;
Shimada, T .
PHARMACOGENETICS, 1997, 7 (02) :103-113
[7]   High catalytic activity of human cytochrome P450 co-expressed with human NADPH-cytochrome P450 reductase in Escherichia coli [J].
Iwata, H ;
Fujita, K ;
Kushida, H ;
Suzuki, A ;
Konno, Y ;
Nakamura, K ;
Fujino, A ;
Kamataki, T .
BIOCHEMICAL PHARMACOLOGY, 1998, 55 (08) :1315-1325
[8]   MOLECULAR-CLONING OF MONKEY LIVER CYTOCHROME-P-450 CDNAS - SIMILARITY OF THE PRIMARY SEQUENCES TO HUMAN CYTOCHROMES-P-450 [J].
KOMORI, M ;
KIKUCHI, O ;
SAKUMA, T ;
FUNAKI, J ;
KITADA, M ;
KAMATAKI, T .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1171 (02) :141-146
[9]   Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression [J].
Kuehl, P ;
Zhang, J ;
Lin, Y ;
Lamba, J ;
Assem, M ;
Schuetz, J ;
Watkins, PB ;
Daly, A ;
Wrighton, SA ;
Hall, SD ;
Maurel, P ;
Relling, M ;
Brimer, C ;
Yasuda, K ;
Venkataramanan, R ;
Strom, S ;
Thummel, K ;
Boguski, MS ;
Schuetz, E .
NATURE GENETICS, 2001, 27 (04) :383-391
[10]   Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism [J].
Lin, YS ;
Dowling, ALS ;
Quigley, SD ;
Farin, FM ;
Zhang, J ;
Lamba, J ;
Schuetz, EG ;
Thummel, KE .
MOLECULAR PHARMACOLOGY, 2002, 62 (01) :162-172