Approximation of eigenvalues of Sturm-Liouville problems defined on a semi-infinite domain

被引:3
作者
Mebirouk, AbdelMouemin [1 ]
Bouheroum-Mentri, Sabria [2 ]
Aceto, Lidia [3 ]
机构
[1] Badji Mokhtar Univ, Math Modeling & Numer Simulat Lab, BP 12, Annaba, Algeria
[2] Badji Mokhtar Univ, Lab Appl Math, BP 12, Annaba, Algeria
[3] Univ Pisa, Dipartimento Matemat, Via Buonarroti 1-C, I-56127 Pisa, Italy
关键词
Sturm-Liouville problem; Infinite interval; Finite difference schemes; Eigenvalues; SCHRODINGER; SOFTWARE; PACKAGE;
D O I
10.1016/j.amc.2019.124823
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we describe how to approximate numerically the eigenvalues of a Sturm-Liouville problem defined on a semi-infinite interval. The key idea is to transform the problem in such a way as to compress the semi-infinite interval in a finite interval by applying a suitable change of the independent variable. Then, we approximate each derivative in the Sturm-Liouville equation thus obtained with finite difference schemes. Consequently, we convert the Sturm-Liouville problem into an algebraic eigenvalue problem. The numerical results of the experiments show that the proposed approach is promising. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:10
相关论文
共 30 条
[1]  
Aceto L., 2014, NUMERICAL TREATMENT
[2]   Numerical solution of forward and inverse Sturm-Liouville problems with an angular momentum singularity [J].
Aceto, Lidia ;
Ghelardoni, Paolo ;
Marletta, Marco .
INVERSE PROBLEMS, 2008, 24 (01)
[3]   Matrix methods for radial Schrodinger eigenproblems defined on a semi-infinite domain [J].
Aceto, Lidia ;
Magherini, Cecilia ;
Weinmueller, Ewa B. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 255 :179-188
[4]   High-order finite difference schemes for the solution of second-order BVPs [J].
Amodio, P ;
Sgura, I .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 176 (01) :59-76
[5]  
[Anonymous], 2010, JNAIAM J. Numer. Anal. Ind. Appl. Math
[6]  
[Anonymous], 2011, J. Numer. Analy. Industr. Appl. Mathemat.
[7]  
Bailey P.B., 1991, Results in Mathematics, V20, P391, DOI DOI 10.1007/BF03323182
[8]   Algorithm 810: The SLEIGN2 Sturm-Liouville code [J].
Bailey, PB ;
Everitt, WN ;
Zettl, A .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2001, 27 (02) :143-192
[9]  
Birkhoff G., 1989, Ordinary differential equations
[10]   From nonlinear PDEs to singular ODEs [J].
Budd, C ;
Koch, O ;
Weinmüller, E .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) :413-422