CuO Nanofilm-Covered Cu Microcone Coating for a Long Cycle Li Metal Anode by In Situ Formed Li2O

被引:21
作者
Hu, Wang [1 ]
Yao, Yiyuan [1 ]
Huang, Xiang [2 ]
Ju, Shenghong [2 ]
Chen, Zhuo [3 ]
Li, Ming [1 ]
Wu, Yunwen [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Sch Mat Sci & Engn, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, China UK Low Carbon Coll, Shanghai 201306, Peoples R China
[3] Cent South Univ, Coll Mech & Elect Engn, Changsha 410083, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2022年 / 5卷 / 03期
基金
中国国家自然科学基金;
关键词
Li metal batteries; dendrite-free; current collector; Cu microcone; CuO nano fi lm; interfacial strain energy; LITHIUM ANODE; DENDRITE; BATTERIES; PERFORMANCE; CHALLENGES; NUCLEATION; DEPOSITION; ZNO;
D O I
10.1021/acsaem.2c00218
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the high theoretical specific capacity and ultralow reduction potential advantages of Li anodes, dendrite growth in Li metal batteries leads to many problems. Realizing uniform Li deposition is the key to solving these problems, but it is usually difficult for traditional Li metal electrodes. In this study, CuO nanofilm-covered Cu microcones (NFMCs) on a Cu foil are prepared as current collectors to suppress Li dendrite growth and improve the electrochemical performance of the batteries. Li2O is in situ formed during the course of Li deposition according to the conversion reaction between CuO and Li. The nucleation energy barrier of Li is decreased due to high affinity between Li2O and Li. In addition, we found that Li2O also decreases the elastic strain energy at the interface between the deposited Li and the Li2O film, leading to uniform coverage of Li metal on microcones. The Li2O/Cu NFMCs show a coral-like structure instead of the sharp cone structure in Cu microcones. Thus, they can effectively mitigate the tip-charge effect, which will cause the continuous reduction of the Li ion at the tip. As a result, uniform and stable Li deposition without observation of the Li dendrite up to 1000 cycles at a current density of 5 mA cm-2 is achieved using this Li2O/ Cu NFMC substrate. A full cell upon pairing with LiFePO4 achieves a high Coulombic efficiency of 96.7% for over 100 cycles at 0.2 C with a capacity retention over 92.7%.
引用
收藏
页码:3773 / 3782
页数:10
相关论文
共 47 条
[1]   Solid Electrolyte Interphases on Sodium Metal Anodes [J].
Bao, Changyuan ;
Wang, Bo ;
Liu, Peng ;
Wu, Hao ;
Zhou, Yu ;
Wang, Dianlong ;
Liu, Huakun ;
Dou, Shixue .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
[2]   Sodiophilic Decoration of a Three-Dimensional Conductive Scaffold toward a Stable Na Metal Anode [J].
Bao, Changyuan ;
Wang, Bo ;
Xie, Ying ;
Song, Rensheng ;
Jiang, Yunpeng ;
Ning, Yu ;
Wang, Fei ;
Ruan, Tingting ;
Wang, Dianlong ;
Zhou, Yu .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (14) :5452-5463
[3]   Stable Lithium Metal Anode Achieved by In Situ Grown CuO Nanowire Arrays on Cu Foam [J].
Cao, Jiaqi ;
Deng, Liying ;
Wang, Xinghui ;
Li, Wangyang ;
Xie, Yonghui ;
Zhang, Jie ;
Cheng, Shuying .
ENERGY & FUELS, 2020, 34 (06) :7684-7691
[4]   Co-guiding the dendrite-free plating of lithium on lithiophilic ZnO and fluoride modified 3D porous copper for stable Li metal anode [J].
Chang, Xinshuang ;
Liu, Hang ;
Yang, Hang ;
Di, Jie ;
Tang, Wenhao ;
Fu, Huadong ;
Li, Mingyang ;
Liu, Ruiping .
JOURNAL OF MATERIOMICS, 2020, 6 (01) :54-61
[5]   Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode [J].
Chen, Xiang ;
Hou, Ting-Zheng ;
Li, Bo ;
Yan, Chong ;
Zhu, Lin ;
Guan, Chao ;
Cheng, Xin-Bing ;
Peng, Hong-Jie ;
Huang, Jia-Qi ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 8 :194-201
[6]   Challenges in the development of advanced Li-ion batteries: a review [J].
Etacheri, Vinodkumar ;
Marom, Rotem ;
Elazari, Ran ;
Salitra, Gregory ;
Aurbach, Doron .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3243-3262
[7]   Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface [J].
Gao, Yue ;
Rojas, Tomas ;
Wang, Ke ;
Liu, Shuai ;
Wang, Daiwei ;
Chen, Tianhang ;
Wang, Haiying ;
Ngo, Anh T. ;
Wang, Donghai .
NATURE ENERGY, 2020, 5 (07) :534-542
[8]   Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes [J].
Gu, Yu ;
Xu, Hong-Yu ;
Zhang, Xia-Guang ;
Wang, Wei-Wei ;
He, Jun-Wu ;
Tang, Shuai ;
Yan, Jia-Wei ;
Wu, De-Yin ;
Zheng, Ming-Sen ;
Dong, Quan-Feng ;
Mao, Bing-Wei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (10) :3092-3096
[9]   Solid-state lithium battery chemistries achieving high cycle performance at room temperature by a new garnet-based composite electrolyte [J].
Hao, Shimeng ;
Zhang, Hui ;
Yao, Wei ;
Lin, Junpin .
JOURNAL OF POWER SOURCES, 2018, 393 :128-134
[10]   Dendrite-free Li metal anode enabled by a 3D free-standing lithiophilic nitrogen-enriched carbon sponge [J].
Hou, Guangmei ;
Ren, Xiaohua ;
Ma, Xiaoxin ;
Zhang, Le ;
Zhai, Wei ;
Ai, Qing ;
Xu, Xiaoyan ;
Zhang, Lin ;
Si, Pengchao ;
Feng, Jinkui ;
Ding, Fei ;
Ci, Lijie .
JOURNAL OF POWER SOURCES, 2018, 386 :77-84