Widths of embeddings of 2-microlocal Besov spaces

被引:0
作者
Zhang, Shun [1 ,2 ]
Fang, Gensun [2 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Key Lab Intelligent Comp & Signal Proc, Minist Educ, Hefei 230601, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金;
关键词
Approximation numbers; Gelfand numbers; Kolmogorov numbers; Compact embeddings; 2-microlocal Besov spaces; WEIGHTED FUNCTION-SPACES; APPROXIMATION NUMBERS; SOBOLEV EMBEDDINGS; ENTROPY NUMBERS; S-NUMBERS; GELFAND;
D O I
10.1016/j.jat.2013.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the asymptotic behavior of the approximation, Gelfand and Kolmogorov numbers of compact embeddings between 2-microlocal Besov spaces with weights defined in terms of the distance to a d-set U subset of R-n. The sharp estimates are shown in most cases, where the quasi-Banach setting is included. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 62
页数:30
相关论文
共 35 条
[1]  
[Anonymous], 2006, THEORY FUNCTION SPAC
[2]  
Bony I., 1986, HYPERBOLIC EQUATIONS, P11
[3]   ENTROPY NUMBERS, S-NUMBERS, AND EIGENVALUE PROBLEMS [J].
CARL, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1981, 41 (03) :290-306
[4]   Gelfand numbers and widths [J].
Edmunds, David E. ;
Lang, Jan .
JOURNAL OF APPROXIMATION THEORY, 2013, 166 :78-84
[5]  
Edmunds David E., 1996, Cambridge Tracts in Mathematics
[6]   The Gelfand widths of lp-balls for 0 < p ≤ 1 [J].
Foucart, Simon ;
Pajor, Alain ;
Rauhut, Holger ;
Ullrich, Tino .
JOURNAL OF COMPLEXITY, 2010, 26 (06) :629-640
[7]  
Garnaev A.Yu., 1984, DOKL AKAD NAUK SSSR, V277, p[1048, 200]
[8]   Some s-numbers of embeddings of function spaces with weights of logarithmic type [J].
Gasiorowska, Alicja ;
Skrzypczak, Leszek .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (07) :644-658
[9]  
GLUSKIN ED, 1984, MATH USSR SB, V48, P173
[10]   ENTROPY AND APPROXIMATION NUMBERS OF EMBEDDINGS OF FUNCTION SPACES WITH MUCKENHOUPT WEIGHTS, II. GENERAL WEIGHTS [J].
Haroske, Dorothee D. ;
Skrzypczak, Leszek .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2011, 36 (01) :111-138