Cellular nanotechnology: making biological interfaces smarter

被引:122
作者
Mendes, Paula M. [1 ]
机构
[1] Univ Birmingham, Sch Chem Engn, Birmingham B15 2TT, W Midlands, England
基金
英国惠康基金;
关键词
SELF-ASSEMBLED MONOLAYERS; NEURAL STEM-CELLS; SILICON NANOWIRES; SURFACES; ADHESION; CULTURE; DIFFERENTIATION; TOPOGRAPHY; INTEGRINS; NANOSCALE;
D O I
10.1039/c3cs60198f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.
引用
收藏
页码:9207 / 9218
页数:12
相关论文
共 59 条
[1]   Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control [J].
Akiyama, Y ;
Kikuchi, A ;
Yamato, M ;
Okano, T .
LANGMUIR, 2004, 20 (13) :5506-5511
[2]  
Al-Amri M, 2012, ADV ATOM MOL OPT PHY, V61, P409
[3]  
[Anonymous], ANGEW CHEM INT ED
[4]   Activation of integrin function by nanopatterned adhesive interfaces [J].
Arnold, M ;
Cavalcanti-Adam, EA ;
Glass, R ;
Blümmel, J ;
Eck, W ;
Kantlehner, M ;
Kessler, H ;
Spatz, JP .
CHEMPHYSCHEM, 2004, 5 (03) :383-388
[5]   Intact Mammalian Cell Function on Semiconductor Nanowire Arrays: New Perspectives for Cell-Based Biosensing [J].
Berthing, Trine ;
Bonde, Sara ;
Sorensen, Claus B. ;
Utko, Pawel ;
Nygard, Jesper ;
Martinez, Karen L. .
SMALL, 2011, 7 (05) :640-647
[6]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[7]   Nanotopographical modification: a regulator of cellular function through focal adhesions [J].
Biggs, Manus Jonathan Paul ;
Richards, R. Geoff ;
Dalby, Matthew J. .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2010, 6 (05) :619-633
[8]   The human genome project: Lessons from large-scale biology [J].
Collins, FS ;
Morgan, M ;
Patrinos, A .
SCIENCE, 2003, 300 (5617) :286-290
[9]  
Dalby MJ, 2007, INT J NANOMED, V2, P373
[10]   In vitro reaction of endothelial cells to polymer demixed nanotopography [J].
Dalby, MJ ;
Riehle, MO ;
Johnstone, H ;
Affrossman, S ;
Curtis, ASG .
BIOMATERIALS, 2002, 23 (14) :2945-2954