Non-hermitian random matrix models

被引:91
|
作者
Janik, RA
Nowak, MA
Papp, G
Zahed, I
机构
[1] GESELL SCHWERIONENFORSCH MBH, D-64291 DARMSTADT, GERMANY
[2] TH DARMSTADT, INST KERNPHYS, D-64289 DARMSTADT, GERMANY
[3] EOTVOS LORAND UNIV, INST THEORET PHYS, BUDAPEST, HUNGARY
[4] SUNY STONY BROOK, DEPT PHYS, STONY BROOK, NY 11794 USA
关键词
non-hermitian random matrix models; diagrammatic expansion; universal correlator;
D O I
10.1016/S0550-3213(97)00418-5
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We introduce an extension of the diagrammaric rules in random matrix theory and apply it to non-hermitian random matrix models using the 1/N approximation. A number of one- and two-point functions are evaluated on their holomorphic and non-holomorphic supports to leading order in 1/N. The one-point functions describe the distribution of eigenvalues, while the two-point functions characterize their macroscopic correlations, The generic form for the two-point functions is obtained, generalizing the concept of macroscopic universality to non-hermitian random matrices, We show that the holomorphic and non-holomorphic one-and two-point functions condition the behavior of pertinent partition functions to order O(1/N), We derive explicit conditions for the location and distribution of their singularities, Most of our analytical results are found to be in good agreement with numerical calculations using large ensembles of complex matrices. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:603 / 642
页数:40
相关论文
共 50 条
  • [1] New developments in Non-hermitian Random Matrix Models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    NEW DEVELOPMENTS IN QUANTUM FIELD THEORY, 1998, 366 : 297 - 314
  • [2] Non-Hermitian random matrix models: Free random variable approach
    Janik, RA
    Nowak, MA
    Papp, G
    Wambach, J
    Zahed, I
    PHYSICAL REVIEW E, 1997, 55 (04) : 4100 - 4106
  • [3] Correlations of eigenvectors for non-Hermitian random-matrix models
    Janik, RA
    Norenberg, W
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICAL REVIEW E, 1999, 60 (03): : 2699 - 2705
  • [4] Green's functions in non-hermitian random matrix models
    Janik, RA
    Nowak, MA
    Papp, G
    Zahed, I
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03): : 456 - 462
  • [5] Non-hermitian random matrix theory: Method of hermitian reduction
    Feinberg, J
    Zee, A
    NUCLEAR PHYSICS B, 1997, 504 (03) : 579 - 608
  • [6] Duality in non-Hermitian random matrix theory
    Liu, Dang-Zheng
    Zhang, Lu
    NUCLEAR PHYSICS B, 2024, 1004
  • [7] Non-Hermitian Euclidean random matrix theory
    Goetschy, A.
    Skipetrov, S. E.
    PHYSICAL REVIEW E, 2011, 84 (01):
  • [8] Eigenvector correlations in non-Hermitian random matrix ensembles
    Mehlig, B
    Chalker, JT
    ANNALEN DER PHYSIK, 1998, 7 (5-6) : 427 - 436
  • [9] Eigenvector statistics in non-Hermitian random matrix ensembles
    Chalker, JT
    Mehlig, B
    PHYSICAL REVIEW LETTERS, 1998, 81 (16) : 3367 - 3370
  • [10] On the remarkable spectrum of a non-Hermitian random matrix model
    Holz, DE
    Orland, H
    Zee, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3385 - 3400