Genome-wide Search for Coaxial Helical Stacking Motifs

被引:0
|
作者
Byron, Kevin [1 ,2 ]
Wang, Jason T. L. [1 ,2 ]
Wen, Dongrong [1 ,2 ]
机构
[1] New Jersey Inst Technol, Bioinformat Program, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
来源
IEEE 12TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS & BIOENGINEERING | 2012年
关键词
coaxial helical stacking; genome-wide motif finding; RNA junction; RIBOSOMAL-SUBUNIT; RANDOM FORESTS; RNA; THERMODYNAMICS; IDENTIFICATION; JUNCTIONS;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Motif finding in DNA, RNA and proteins plays an important role in life science research. In this paper, we present a computational approach to searching for RNA tertiary motifs in genomic sequences. Specifically, we describe a method, named CSminer, and show, as a case study, the application of CSminer to genome-wide search for coaxial helical stackings in RNA 3-way junctions. A coaxial helical stacking motif occurs in an RNA 3-way junction where two separate helical elements form a pseudocontiguous helix and provide thermodynamic stability to the RNA molecule as a whole. Experimental results demonstrate the effectiveness of our approach.
引用
收藏
页码:260 / 265
页数:6
相关论文
共 50 条
  • [41] The limits of genome-wide methods for pharmacogenomic testing
    Gamazon, Eric R.
    Skol, Andrew D.
    Perera, Minoli A.
    PHARMACOGENETICS AND GENOMICS, 2012, 22 (04) : 261 - 272
  • [42] GENOME-WIDE TRANSLATIONAL PROFILING BY RIBOSOME FOOTPRINTING
    Ingolia, Nicholas T.
    METHODS IN ENZYMOLOGY, VOL 470: GUIDE TO YEAST GENETICS:: FUNCTIONAL GENOMICS, PROTEOMICS, AND OTHER SYSTEMS ANALYSIS, 2ND EDITION, 2010, 470 : 119 - 142
  • [43] Genome-Wide Association Discoveries of Alcohol Dependence
    Zuo, Lingjun
    Lu, Lingeng
    Tan, Yunlong
    Pan, Xinghua
    Cai, Yiqiang
    Wang, Xiaoping
    Hong, Jiang
    Zhong, Chunlong
    Wang, Fei
    Zhang, Xiang-Yang
    Vanderlinden, Lauren A.
    Tabakoff, Boris
    Luo, Xingguang
    AMERICAN JOURNAL ON ADDICTIONS, 2014, 23 (06) : 526 - 539
  • [44] Genome-wide discovery of human heart enhancers
    Narlikar, Leelavati
    Sakabe, Noboru J.
    Blanski, Alexander A.
    Arimura, Fabio E.
    Westlund, John M.
    Nobrega, Marcelo A.
    Ovcharenko, Ivan
    GENOME RESEARCH, 2010, 20 (03) : 381 - 392
  • [45] Genome-Wide Detection and Analysis of Multifunctional Genes
    Pritykin, Yuri
    Ghersi, Dario
    Singh, Mona
    PLOS COMPUTATIONAL BIOLOGY, 2015, 11 (10)
  • [46] Tools for genome-wide strain design and construction
    Boyle, Nanette R.
    Gill, Ryan T.
    CURRENT OPINION IN BIOTECHNOLOGY, 2012, 23 (05) : 666 - 671
  • [47] Genome-wide RNA Tomography in the Zebrafish Embryo
    Junker, Jan Philipp
    Noel, Emily S.
    Guryev, Victor
    Peterson, Kevin A.
    Shah, Gopi
    Huisken, Jan
    McMahon, Andrew P.
    Berezikov, Eugene
    Bakkers, Jeroen
    van Oudenaarden, Alexander
    CELL, 2014, 159 (03) : 662 - 675
  • [48] Machine Learning in Genome-Wide Association Studies
    Szymczak, Silke
    Biernacka, Joanna M.
    Cordell, Heather J.
    Gonzalez-Recio, Oscar
    Koenig, Inke R.
    Zhang, Heping
    Sun, Yan V.
    GENETIC EPIDEMIOLOGY, 2009, 33 : S51 - S57
  • [49] Genome-wide analysis of microRNA targeting impacted by SNPs in cucumber genome
    Ling, Jian
    Luo, Zhongqin
    Liu, Feng
    Mao, Zhenchuan
    Yang, Yuhong
    Xie, Bingyan
    BMC GENOMICS, 2017, 18
  • [50] Genome-wide analysis of short interspersed nuclear elements provides insight into gene and genome evolution in citrus
    Meng, Haijun
    Feng, Jiancan
    Bai, Tuanhui
    Jian, Zaihai
    Chen, Yanhui
    Wu, Guoliang
    DNA RESEARCH, 2020, 27 (01)