共 4 条
The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation
被引:26
|作者:
Gin, Elan
[1
,2
]
Diernfellner, Axel C. R.
[3
]
Brunner, Michael
[3
]
Hoefer, Thomas
[1
,2
]
机构:
[1] German Canc Res Ctr, Div Theoret Syst Biol, Heidelberg, Germany
[2] Heidelberg Univ, Bioquant Ctr, D-69120 Heidelberg, Germany
[3] Heidelberg Univ, Biochem Ctr BZH, D-69120 Heidelberg, Germany
关键词:
adaptation;
mathematical model;
Neurospora;
protein-protein interaction;
VVD;
CIRCADIAN CLOCK GENE;
WHITE-COLLAR COMPLEX;
TRANSCRIPTIONAL REGULATION;
MOLECULAR-MECHANISM;
SIGNAL-TRANSDUCTION;
PERFECT ADAPTATION;
PROTEIN;
FEEDBACK;
PHOSPHORYLATION;
FREQUENCY;
D O I:
10.1038/msb.2013.24
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The light response in Neurospora is mediated by the photoreceptor and circadian transcription factor White Collar Complex (WCC). The expression rate of the WCC target genes adapts in daylight and remains refractory to moonlight, despite the extraordinary light sensitivity of the WCC. To explain this photoadaptation, feedback inhibition by the WCC interaction partner VIVID (VVD) has been invoked. Here we show through data-driven mathematical modeling that VVD allows Neurospora to detect relative changes in light intensity. To achieve this behavior, VVD acts as an inhibitor of WCC-driven gene expression and, at the same time, as a positive regulator that maintains the responsiveness of the photosystem. Our data indicate that this paradoxical function is realized by a futile cycle that involves the light-induced sequestration of active WCC by VVD and the replenishment of the activatable WCC pool through the decay of the photoactivated state. Our quantitative study uncovers a novel network motif for achieving sensory adaptation and defines a core input module of the circadian clock in Neurospora.
引用
收藏
页数:11
相关论文