In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments

被引:92
|
作者
Bell, JF
Joseph, J
Sohl-Dickstein, JN
Arneson, HM
Johnson, MJ
Lemmon, MT
Savransky, D
机构
[1] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[2] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX 77843 USA
关键词
D O I
10.1029/2005JE002444
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The Mars Exploration Rover Panoramic Camera ( MER/Pancam) instruments have acquired more than 60,000 high-resolution, multispectral, stereoscopic images of soil, rocks, and sky at the Gusev crater and Meridiani Planum landing sites since January 2004. These images, combined with other MER data sets, have enabled new discoveries about the composition, mineralogy, and geologic/geochemical evolution of both sites. One key to the success of Pancam in contributing to the overall success of MER has been the development of a calibration pipeline that can quickly remove instrumental artifacts and generate both absolute radiance and relative reflectance images with high accuracy and precision in order to influence tactical rover driving and in situ sampling decisions. This paper describes in detail the methods, assumptions, and models/algorithms in the calibration pipeline developed for Pancam images, based on new measurements and refinements performed primarily from flight data acquired on Mars. Major calibration steps include modeling and removal of detector bias signal, active and readout region dark current, electronic "shutter smear,'' and pixel-to-pixel responsivity ( flatfield) variations. Pancam images are calibrated to radiance ( W/m(2)/nm/sr) using refined preflight-derived calibration coefficients, or radiance factor ( I/F) using near-in-time measurements of the Pancam calibration target and a model of aeolian dust deposition on the target as a function of time. We are able to verify that the absolute radiance calibration of most Pancam images is accurate to within about 10% or less and that the filter-to-filter and pixel-to-pixel precision of the calibrated relative reflectance data ( both based on measurements of the Pancam calibration target) are typically about 3% and 1% or less, respectively. Examples are also presented of scientific applications made possible by the high fidelity of the calibrated Pancam data. These include 11-color visible to near-IR spectral analysis, calculation of "true color'' and chromaticity values, and generation of "super resolution'' image data products. This work represents a follow-on and enhancement to the Pancam preflight calibration process described by Bell et al. ( 2003).
引用
收藏
页数:38
相关论文
共 50 条
  • [21] In-flight calibration of the magnetometer on the Mars orbiter of Tianwen-1
    ZOU ZhuXuan
    WANG YuMing
    ZHANG TieLong
    WANG GuoQiang
    XIAO SuDong
    PAN ZongHao
    ZHANG ZhouBin
    YAN Wei
    DU Yang
    CHI YuTian
    CHENG Long
    WU ZhiYong
    HAO XinJun
    LI YiRen
    LIU Kai
    CHEN ManMing
    SU ZhenPeng
    SHEN ChengLong
    XU MengJiao
    GUO JingNan
    Science China(Technological Sciences), 2023, (08) : 2396 - 2405
  • [22] In-flight calibration of the magnetometer on the Mars orbiter of Tianwen-1
    ZhuXuan Zou
    YuMing Wang
    TieLong Zhang
    GuoQiang Wang
    SuDong Xiao
    ZongHao Pan
    ZhouBin Zhang
    Wei Yan
    Yang Du
    YuTian Chi
    Long Cheng
    ZhiYong Wu
    XinJun Hao
    YiRen Li
    Kai Liu
    ManMing Chen
    ZhenPeng Su
    ChengLong Shen
    MengJiao Xu
    JingNan Guo
    Science China Technological Sciences, 2023, 66 : 2396 - 2405
  • [23] In-flight calibration of the magnetometer on the Mars orbiter of Tianwen-1
    Zou, ZhuXuan
    Wang, YuMing
    Zhang, TieLong
    Wang, GuoQiang
    Xiao, SuDong
    Pan, ZongHao
    Zhang, ZhouBin
    Yan, Wei
    Du, Yang
    Chi, YuTian
    Cheng, Long
    Wu, ZhiYong
    Hao, XinJun
    Li, YiRen
    Liu, Kai
    Chen, ManMing
    Su, ZhenPeng
    Shen, ChengLong
    Xu, MengJiao
    Guo, JingNan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2023, 66 (08) : 2396 - 2405
  • [24] In-flight calibration of the magnetometer on the Mars orbiter of Tianwen-1
    ZOU ZhuXuan
    WANG YuMing
    ZHANG TieLong
    WANG GuoQiang
    XIAO SuDong
    PAN ZongHao
    ZHANG ZhouBin
    YAN Wei
    DU Yang
    CHI YuTian
    CHENG Long
    WU ZhiYong
    HAO XinJun
    LI YiRen
    LIU Kai
    CHEN ManMing
    SU ZhenPeng
    SHEN ChengLong
    XU MengJiao
    GUO JingNan
    Science China(Technological Sciences), 2023, 66 (08) : 2396 - 2405
  • [25] Calibration and In-flight Performance of DART's Didymos Reconnaissance and Asteroid Camera for OpNav (DRACO)
    Ernst, Carolyn M.
    Daly, R. Terik
    Fletcher, Zachary J.
    Ryan, Kyle J.
    Cheng, Andrew F.
    Hsieh, Syau-Yun W.
    Farnham, Tony L.
    Sawyer, Carolyn A.
    Glantzberg, Allison K.
    Barnouin, Olivier S.
    Weaver, Harold A.
    Bekker, Dmitriy L.
    Chabot, Nancy L.
    Espiritu, Raymond C.
    Dickman, Joseph
    Greenberg, Jacob M.
    Lewis, Derek A.
    Maas, Bryan J.
    Mages, Declan M.
    Nair, Hari
    Nelson, Tyler W.
    Rodriguez, Luis M.
    Rush, Brian P.
    Smith, Ronald D.
    Waller, C. Dany
    PLANETARY SCIENCE JOURNAL, 2024, 5 (11):
  • [26] In-Flight Calibration and Performance of the OSIRIS-REx Touch And Go Camera System (TAGCAMS)
    Bos, B. J.
    Nelson, D. S.
    Pelgrift, J. Y.
    Liounis, A. J.
    Doelling, D.
    Norman, C. D.
    Olds, R. D.
    May, C. W.
    Witherspoon, R.
    Church, E.
    Huish, D.
    Adam, C. D.
    Sahr, E.
    Kidd, J.
    Drozd, K.
    Owen, W. M.
    Moreau, M. C.
    Seals, L. T.
    Butt, J.
    LeDuc, D.
    Alkiek, K.
    Chevres-Fernandez, L. R.
    Gordon, K. E.
    Khlopenkov, K.
    Haney, C.
    Bhatt, R.
    Hikes, J.
    Wolfram, A.
    Caplinger, M.
    Ravine, M. A.
    Getzandanner, K.
    Bartels, A.
    Lauretta, D. S.
    SPACE SCIENCE REVIEWS, 2020, 216 (04)
  • [27] In-flight performance and calibration of the Chandra high resolution camera imager (HRC-I)
    Kenter, A
    Chappell, JH
    Kraft, R
    Meehan, G
    Murray, SS
    Zombeck, M
    Hole, KT
    Juda, M
    Donnelly, RH
    Patnaude, D
    Pease, D
    Wilton, C
    Zhao, P
    Austin, G
    Fraser, G
    Pearson, J
    Lees, J
    Brunton, A
    Barbera, M
    Collura, A
    Serio, S
    X-RAY OPTICS, INSTRUMENTS, AND MISSIONS III, 2000, 4012 : 467 - 492
  • [28] In-Flight Calibration and Performance of the OSIRIS-REx Touch And Go Camera System (TAGCAMS)
    B. J. Bos
    D. S. Nelson
    J. Y. Pelgrift
    A. J. Liounis
    D. Doelling
    C. D. Norman
    R. D. Olds
    C. W. May
    R. Witherspoon
    E. Church
    D. Huish
    C. D. Adam
    E. Sahr
    J. Kidd
    K. Drozd
    W. M. Owen
    M. C. Moreau
    L. T. Seals
    J. Butt
    D. LeDuc
    K. Alkiek
    L. R. Chevres-Fernandez
    K. E. Gordon
    K. Khlopenkov
    C. Haney
    R. Bhatt
    J. Hikes
    A. Wolfram
    M. Caplinger
    M. A. Ravine
    K. Getzandanner
    A. Bartels
    D. S. Lauretta
    Space Science Reviews, 2020, 216
  • [29] The mars exploration rover surface mobility flight Software: Driving ambition
    Biesiadecki, Jeffrey J.
    Maimone, Mark W.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 51 - +
  • [30] Challenges for In-Flight Calibration of Thermal Infrared Instruments for Earth Observation
    Smith, David
    Peters, Daniel
    Nightingale, Timothy
    Pearce, Jonathan
    Veltcheva, Radka
    REMOTE SENSING, 2020, 12 (11)