On the finiteness of Gorenstein homological dimensions

被引:64
作者
Emmanouil, Ioannis [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Gorenstein projective; injective and flat modules; Relative derived functors; Gorenstein global dimensions; MODULES; RINGS; COHOMOLOGY; ALGEBRAS; FUNCTORS;
D O I
10.1016/j.jalgebra.2012.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study certain properties of modules of finite Gorenstein projective, injective and flat dimensions. We examine conditions which imply that all Gorenstein projective modules are Gorenstein flat and establish the balance of the Gorenstein Tor-functor for modules of finite Gorenstein projective dimension. We also examine the class of rings that have finite Gorenstein global and weak dimensions and compute these dimensions, in terms of certain cohomological invariants of the ring. Finally, we provide some examples of rings of finite Gorenstein global and weak dimensions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:376 / 396
页数:21
相关论文
共 36 条
  • [1] Mittag-Leffler Conditions on Modules
    Angeleri Hugel, Lidia
    Herbera, Dolors
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) : 2459 - 2517
  • [2] [Anonymous], 1961, PUBL MATH I HAUTES E
  • [3] Auslander M., 1969, MEM AM MATH SOCS, V94
  • [4] AUSLANDER M, 1967, SEM ALG COMM DIR P S
  • [5] Auslander Maurice, 1957, Trans. Amer. Math. Soc., V85, P390, DOI DOI 10.2307/1992937
  • [6] Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension
    Avramov, LL
    Martsinkovsky, A
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2002, 85 : 393 - 440
  • [7] Gorenstein dimension and proper actions
    Bahlekeh, Abdolnaser
    Dembegioti, Fotini
    Talelli, Olympia
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 859 - 871
  • [8] Ballas D., PREPRINT
  • [9] THICK SUBCATEGORIES AND VIRTUALLY GORENSTEIN ALGEBRAS
    Beligiannis, Apostolos
    Krause, Henning
    [J]. ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (02) : 551 - 562
  • [10] A Note on Gorenstein Flat Dimension
    Bennis, Driss
    [J]. ALGEBRA COLLOQUIUM, 2011, 18 (01) : 155 - 161