Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma

被引:39
作者
Aguilar, Carlos A. [1 ]
Pop, Ramona [2 ,3 ]
Shcherbina, Anna [1 ]
Watts, Alain [1 ]
Matheny, Ronald W., Jr. [4 ]
Cacchiarelli, Davide [2 ,3 ]
Han, Woojin M. [5 ,6 ]
Shin, Eunjung [6 ,7 ]
Nakhai, Shadi A. [6 ,7 ,8 ]
Jang, Young C. [6 ,7 ,8 ]
Carrigan, Christopher T. [4 ]
Gifford, Casey A. [2 ,3 ]
Kottke, Melissa A. [4 ]
Cesana, Marcella [9 ]
Lee, Jackson [1 ]
Urso, Maria L. [4 ]
Meissner, Alexander [2 ,3 ]
机构
[1] MIT, Lincoln Lab, Lexington, MA 02127 USA
[2] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
[3] Harvard Univ, Harvard Stem Cell Inst, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[4] US Army, Mil Performance Div, Inst Environm Med, Natick, MA 01760 USA
[5] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Biol Sci, Atlanta, GA 30332 USA
[8] Georgia Inst Technol, Wallace Coulter Dept Biomed Engn, Atlanta, GA 30332 USA
[9] Harvard Med Sch, Boston Childrens Hosp, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
关键词
LONG NONCODING RNA; DUCHENNE MUSCULAR-DYSTROPHY; CELL-CYCLE ARREST; SKELETAL-MUSCLE; SATELLITE CELL; STEM-CELLS; INFLAMMATORY MONOCYTES; PI3K P110-ALPHA; MYOD BINDING; DIFFERENTIATION;
D O I
10.1016/j.stemcr.2016.09.009
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that control these reparative events is lacking. To address this, we monitored the in vivo dynamics of three histone modifications and coding and non-coding RNA expression throughout the regenerative process in a mouse model of traumatic muscle injury. We first illustrate how both coding and noncoding RNAs in tissues and sorted satellite cells are modified and regulated during various stages after trauma. Next, we use chromatin immunoprecipitation followed by sequencing to evaluate the chromatin state of cis-regulatory elements (promoters and enhancers) and view how these elements evolve and influence various muscle repair and regeneration transcriptional programs. These results provide a comprehensive view of the central factors that regulate muscle regeneration and underscore the multiple levels through which both transcriptional and epigenetic patterns are regulated to enact appropriate repair and regeneration.
引用
收藏
页码:983 / 997
页数:15
相关论文
共 69 条
[1]   XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks [J].
Acosta-Alvear, Diego ;
Zhou, Yiming ;
Blais, Alexandre ;
Tsikitis, Mary ;
Lents, Nathan H. ;
Arias, Carolina ;
Lennon, Christen J. ;
Kluger, Yuval ;
Dynlacht, Brian David .
MOLECULAR CELL, 2007, 27 (01) :53-66
[2]   In vivo Monitoring of Transcriptional Dynamics After Lower-Limb Muscle Injury Enables Quantitative Classification of Healing [J].
Aguilar, Carlos A. ;
Shcherbina, Anna ;
Ricke, Darrell O. ;
Pop, Ramona ;
Carrigan, Christopher T. ;
Gifford, Casey A. ;
Urso, Maria L. ;
Kottke, Melissa A. ;
Meissner, Alexander .
SCIENTIFIC REPORTS, 2015, 5
[3]   Molecular circuitry of stem cell fate in skeletal muscle regeneration, ageing and disease [J].
Almada, Albert E. ;
Wagers, Amy J. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2016, 17 (05) :267-279
[4]   MicroRNA programs in normal and aberrant stem and progenitor cells [J].
Arnold, Christopher P. ;
Tan, Ruoying ;
Zhou, Baiyu ;
Yue, Si-Biao ;
Schaffert, Steven ;
Biggs, Joseph R. ;
Doyonnas, Regis ;
Lo, Miao-Chia ;
Perry, John M. ;
Renault, Valerie M. ;
Sacco, Alessandra ;
Somervaille, Tim ;
Viatour, Patrick ;
Brunet, Anne ;
Cleary, Michael L. ;
Li, Linheng ;
Sage, Julien ;
Zhang, Dong-Er ;
Blau, Helen M. ;
Chen, Caifu ;
Chen, Chang-Zheng .
GENOME RESEARCH, 2011, 21 (05) :798-810
[5]   Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis [J].
Arnold, Ludovic ;
Henry, Adeline ;
Poron, Francoise ;
Baba-Amer, Yasmine ;
van Rooijen, Nico ;
Plonquet, Anne ;
Gherardi, Romain K. ;
Chazaud, Benedicte .
JOURNAL OF EXPERIMENTAL MEDICINE, 2007, 204 (05) :1057-1069
[6]   Genome-wide remodeling of the epigenetic landscape during myogenic differentiation [J].
Asp, Patrik ;
Blum, Roy ;
Vethantham, Vasupradha ;
Parisi, Fabio ;
Micsinai, Mariann ;
Cheng, Jemmie ;
Bowman, Christopher ;
Kluger, Yuval ;
Dynlacht, Brian David .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (22) :E149-E158
[7]   Immune Modulation of Stem Cells and Regeneration [J].
Aurora, Arin B. ;
Olson, Eric N. .
CELL STEM CELL, 2014, 15 (01) :15-26
[8]   Transcription factor TEAD4 regulates expression of Myogenin and the unfolded protein response genes during C2C12 cell differentiation [J].
Benhaddou, A. ;
Keime, C. ;
Ye, T. ;
Morlon, A. ;
Michel, I. ;
Jost, B. ;
Mengus, G. ;
Davidson, I. .
CELL DEATH AND DIFFERENTIATION, 2012, 19 (02) :220-231
[9]   Cellular dynamics in the muscle satellite cell niche [J].
Bentzinger, C. Florian ;
Wang, Yu Xin ;
Dumont, Nicolas A. ;
Rudnicki, Michael A. .
EMBO REPORTS, 2013, 14 (12) :1062-1072
[10]   Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites [J].
Betel, Doron ;
Koppal, Anjali ;
Agius, Phaedra ;
Sander, Chris ;
Leslie, Christina .
GENOME BIOLOGY, 2010, 11 (08)