Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function

被引:77
作者
Han, Jiangfeng [3 ]
Mohammed, Pshtiwan Othman [1 ,2 ]
Zeng, Huidan [3 ]
机构
[1] Univ Sulaimani, Coll Educ, Dept Math, Sulaimani, Kurdistan Regio, Iraq
[2] East China Univ Sci & Technol, Sch Mat Sci & Engn, Key Lab Ultrafine Mat, Minist Educ, Shanghai 200237, Peoples R China
[3] Guangxi Univ Finance & Econ, Dept Informat & Stat, Nanning 530003, Guangxi, Peoples R China
关键词
Riemann-Liouville fractional integral; MT-convex function; integral inequalities;
D O I
10.1515/math-2020-0038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The primary objective of this research is to establish the generalized fractional integral inequalities of Hermite-Hadamard-type for MT-convex functions and to explore some new Hermite-Hadamard-type inequalities in a form of Riemann-Liouville fractional integrals as well as classical integrals. It is worth mentioning that our work generalizes and extends the results appeared in the literature.
引用
收藏
页码:794 / 806
页数:13
相关论文
共 45 条
[1]  
[Anonymous], 2017, GEN HERMITE HADAMARD
[2]   Convex Functions on Discrete Time Domains [J].
Atici, Ferhan M. ;
Yaldiz, Hatice .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (02) :225-233
[3]   W1,p versus C1: The nonsmooth case involving critical growth [J].
Bai, Yunru ;
Gasinski, Leszek ;
Winkert, Patrick ;
Zeng, Shengda .
BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (03)
[4]   A class of generalized mixed variational-hemivariational inequalities I: Existence and uniqueness results [J].
Bai, Yunru ;
Migorski, Stanislaw ;
Zeng, Shengda .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 79 (10) :2897-2911
[5]  
Barnett N.S., 2001, J. Inequal. Pure and Appl. Math, V2
[6]  
Brascamp H J., 1974, J. Funct. Anal, V17, P227
[7]  
Cerone P., 2000, KOREAN J COMPUT APPL, V2, P357, DOI [/10.1007/BF02941972, DOI 10.1007/BF02941972]
[8]   Hardy and uncertainty inequalities on stratified Lie groups [J].
Ciatti, Paolo ;
Cowling, Michael G. ;
Ricci, Fulvio .
ADVANCES IN MATHEMATICS, 2015, 277 :365-387
[9]   Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels [J].
Fernandez, Arran ;
Mohammed, Pshtiwan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (10) :8414-8431
[10]  
Gavrea B., 2010, Gen. Math, V18, P33