Blind separation using convex functions

被引:9
作者
Chen, Y [1 ]
机构
[1] SE Univ, Dept Radio Engn, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
blind source separation; entropy; independence measure; independent component analysis; mutual information;
D O I
10.1109/TSP.2005.847840
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, the problem of how to conveniently estimate independence from observations is addressed. Random variables (RVs) are transformed by their respective distribution functions and quantized. Then, the uniformity of the joint probability of the obtained discrete RVs is evaluated using a strictly convex function. An infinite class of new independence measures, named quasientropy (QE), is thus proposed. Unbiased estimates of the values of the distribution functions at the observations are directly utilized in estimating QE. The linear instantaneous blind source separation (BSS) algorithm based on QE can separate signals with arbitrary continuous distributions.
引用
收藏
页码:2027 / 2035
页数:9
相关论文
共 19 条
[1]   Adaptive blind signal processing - Neural network approaches [J].
Amari, SI ;
Cichocki, A .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2026-2048
[2]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[3]   Infomax and maximum likelihood for blind source separation [J].
Cardoso, JF .
IEEE SIGNAL PROCESSING LETTERS, 1997, 4 (04) :112-114
[4]   BLIND BEAMFORMING FOR NON-GAUSSIAN SIGNALS [J].
CARDOSO, JF ;
SOULOUMIAC, A .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (06) :362-370
[5]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[6]  
CHEN Y, 2001, THESIS SE U NANJING
[7]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[8]  
Cover T. M., 1991, ELEMENTS INFORMATION, P231
[9]  
FISHER Y, 1995, FRACTAL IMAGE COMPRE, P44
[10]  
FORSYTHE GE, COMPUTER METHODS MAT