Quantum many-body scars and Hilbert space fragmentation: a review of exact results

被引:217
作者
Moudgalya, Sanjay [1 ,2 ]
Bernevig, B. Andrei [3 ,4 ,5 ]
Regnault, Nicolas [3 ,6 ]
机构
[1] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[2] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] Donostia Int Phys Ctr, P Manuel de Lardizabal 4, Donostia San Sebastian 20018, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[6] Univ Paris Diderot, Sorbonne Univ, Univ PSL,ENS,CNRS, Sorbonne Paris Cite,Lab Phys,Ecole Normale Super, F-75005 Paris, France
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
scars; fragmentations; ETH; MATRIX PRODUCT STATES; EXACT EXCITED-STATES; STATISTICAL-MECHANICS; RENORMALIZATION-GROUP; DYNAMICS; THERMALIZATION; LOCALIZATION; ENTANGLEMENT; ERGODICITY; MODELS;
D O I
10.1088/1361-6633/ac73a0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The discovery of quantum many-body scars (QMBS) both in Rydberg atom simulators and in the Affleck-Kennedy-Lieb-Tasaki spin-1 chain model, have shown that a weak violation of ergodicity can still lead to rich experimental and theoretical physics. In this review, we provide a pedagogical introduction to and an overview of the exact results on weak ergodicity breaking via QMBS in isolated quantum systems with the help of simple examples such as the fermionic Hubbard model. We also discuss various mechanisms and unifying formalisms that have been proposed to encompass the plethora of systems exhibiting QMBS. We cover examples of equally-spaced towers that lead to exact revivals for particular initial states, as well as isolated examples of QMBS. Finally, we review Hilbert space fragmentation, a related phenomenon where systems exhibit a richer variety of ergodic and non-ergodic behaviors, and discuss its connections to QMBS.
引用
收藏
页数:31
相关论文
共 225 条
[1]   Distinguishing localization from chaos: Challenges in finite-size systems [J].
Abanin, D. A. ;
Bardarson, J. H. ;
De Tomasi, G. ;
Gopalakrishnan, S. ;
Khemani, V ;
Parameswaran, S. A. ;
Pollmann, F. ;
Potter, A. C. ;
Serbyn, M. ;
Vasseur, R. .
ANNALS OF PHYSICS, 2021, 427
[2]   Colloquium: Many-body localization, thermalization, and entanglement [J].
Abanin, Dmitry A. ;
Altman, Ehud ;
Bloch, Immanuel ;
Serbyn, Maksym .
REVIEWS OF MODERN PHYSICS, 2019, 91 (02)
[3]   RIGOROUS RESULTS ON VALENCE-BOND GROUND-STATES IN ANTIFERROMAGNETS [J].
AFFLECK, I ;
KENNEDY, T ;
LIEB, EH ;
TASAKI, H .
PHYSICAL REVIEW LETTERS, 1987, 59 (07) :799-802
[4]   Eigenstate thermalization hypothesis and integrability in quantum spin chains [J].
Alba, Vincenzo .
PHYSICAL REVIEW B, 2015, 91 (15)
[5]   Entanglement entropy of excited states [J].
Alba, Vincenzo ;
Fagotti, Maurizio ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[6]   Revivals imply quantum many-body scars [J].
Alhambra, Alvaro M. ;
Anshu, Anurag ;
Wilming, Henrik .
PHYSICAL REVIEW B, 2020, 101 (20)
[7]   Topological Phases with Parafermions: Theory and Blueprints [J].
Alicea, Jason ;
Fendley, Paul .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 7, 2016, 7 :119-139
[8]   EXTENDED HEISENBERG MODELS OF ANTIFERROMAGNETISM - ANALOGIES TO THE FRACTIONAL QUANTUM HALL-EFFECT [J].
AROVAS, DP ;
AUERBACH, A ;
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1988, 60 (06) :531-534
[9]   2 EXACT EXCITED-STATES FOR THE S=1 AKLT CHAIN [J].
AROVAS, DP .
PHYSICS LETTERS A, 1989, 137 (7-8) :431-433
[10]   Distribution of the Ratio of Consecutive Level Spacings in Random Matrix Ensembles [J].
Atas, Y. Y. ;
Bogomolny, E. ;
Giraud, O. ;
Roux, G. .
PHYSICAL REVIEW LETTERS, 2013, 110 (08)