Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)

被引:325
作者
Lin, Ning [1 ]
Huang, Jin [1 ,5 ,6 ]
Chang, Peter R. [2 ]
Feng, Jiwen [3 ]
Yu, Jiahui [4 ]
机构
[1] Wuhan Univ Technol, Coll Chem Engn, Wuhan 430070, Peoples R China
[2] Agr & Agri Food Canada, Bioprod & Bioproc Natl Sci Program, Saskatoon, SK S7N 0X2, Canada
[3] Chinese Acad Sci, Wuhan Inst Phys & Math, State Key Lab Magnet Resonance & Atom & Mol Phys, Wuhan 430071, Peoples R China
[4] E China Normal Univ, Interdisciplinary Sci & Technol Inst Adv Study, Shanghai 200062, Peoples R China
[5] S China Univ Technol, State Key Lab Pulp & Paper Engn, Guangzhou 510640, Guangdong, Peoples R China
[6] Chinese Acad Sci, Guangzhou Inst Chem, Key Lab Cellulose & Lignocellulos Chem, Guangzhou 510640, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose nanocrystal; Acetylation; Poly(lactic acid); Reinforcing; MECHANICAL-PROPERTIES; POLYMER NANOCOMPOSITES; WHISKERS; BIONANOCOMPOSITES; NANOWHISKERS; COPOLYMERS; BEHAVIOR;
D O I
10.1016/j.carbpol.2010.10.047
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
A novel and facile method for surface acetylation of cellulose nanocrystals (CN) was developed by reaction with acetic anhydride and hydroxyl groups on the surface of CN. The resultant acetylated cellulose nanocrystals (ACN) exhibited improved dispersion in various organic solvents and reduced polarity as compared with unmodified CN. These ACN were subsequently introduced into a poly(lactic acid) (PLA) polymeric matrix to produce fully biodegradable nanocomposites, which showed superior mechanical performance and thermal stability. This improvement was primarily attributed to uniform dispersion of the ACN and to strong interfacial adhesion between filler and matrix. This high performance and eco-friendly nanocomposite will expand the utilization of cellulose nanocrystals from renewable bioresources and the practical application of PLA-based plastic. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1834 / 1842
页数:9
相关论文
共 47 条
[1]   Estimation of the surface properties of styrene-acrylonitrile random copolymers from contact angle measurements [J].
Adao, MHVC ;
Saramago, BJV ;
Fernandes, AC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1999, 217 (01) :94-106
[2]   C-13 NMR-SPECTRA OF CELLULOSE POLYMORPHS [J].
ATALLA, RH ;
GAST, JC ;
SINDORF, DW ;
BARTUSKA, VJ ;
MACIEL, GE .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1980, 102 (09) :3249-3251
[3]   Polylactic acid/cellulose whisker nanocomposites modified by polyvinyl alcohol [J].
Bondeson, Daniel ;
Oksman, Kristiina .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2007, 38 (12) :2486-2492
[4]   One-pot polymerization, surface grafting, and processing of waterborne polyurethane-cellulose nanocrystal nanocomposites [J].
Cao, Xiaodong ;
Habibi, Youssef ;
Lucia, Lucian A. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (38) :7137-7145
[5]   Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy [J].
Chauve, G ;
Heux, L ;
Arouini, R ;
Mazeau, K .
BIOMACROMOLECULES, 2005, 6 (04) :2025-2031
[6]  
Chazeau L, 1999, J POLYM SCI POL PHYS, V37, P2151, DOI 10.1002/(SICI)1099-0488(19990815)37:16<2151::AID-POLB17>3.0.CO
[7]  
2-V
[8]  
Chazeau L, 2000, J POLYM SCI POL PHYS, V38, P383, DOI 10.1002/(SICI)1099-0488(20000201)38:3<383::AID-POLB5>3.0.CO
[9]  
2-Q
[10]   Mechanical behaviour above Tg of a plasticised PVC reinforced with cellulose whiskers;: a SANS structural study [J].
Chazeau, L ;
Cavaillé, JY ;
Terech, P .
POLYMER, 1999, 40 (19) :5333-5344