DYNAMICS OF A HIGHER DIMENSIONAL ANALOG OF THE TRIGONOMETRIC FUNCTIONS

被引:8
作者
Bergweiler, Walter [1 ]
Eremenko, Alexandre [2 ]
机构
[1] Univ Kiel, Math Seminar, D-24098 Kiel, Germany
[2] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Dynamics of entire functions; quasiregular map; Zorich map; Julia set; escaping set; Devaney hair; Hausdorff dimension; HAUSDORFF DIMENSION; FINITE-ORDER; ENTIRE MAPS; JULIA SETS; HAIRS; PARADOX; POINTS; AREA;
D O I
10.5186/aasfm.2011.3610
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a quasiregular analog F of the sine and cosine function such that, for a sufficiently large constant lambda, the map x bar right arrow lambda F(x) is locally expanding. We show that the dynamics of this map define a representation of R-d, d >= 2, as a union of simple curves gamma: [0, infinity) -> R-d which tend to infinity and whose interiors gamma* = gamma((0, infinity)) are disjoint such that the union of all gamma* has Hausdorff dimension 1.
引用
收藏
页码:165 / 175
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 1993, QUASIREGULAR MAPPING
[2]   Trees and hairs for some hyperbolic entire maps of finite order [J].
Baranski, Krzysztof .
MATHEMATISCHE ZEITSCHRIFT, 2007, 257 (01) :33-59
[3]   Hausdorff dimension of hairs and ends for entire maps of finite order [J].
Baranski, Krzysztof .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2008, 145 :719-737
[4]   ITERATION OF MEROMORPHIC FUNCTIONS [J].
BERGWEILER, W .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 29 (02) :151-188
[5]  
Bergweiler W, 2009, P AM MATH SOC, V137, P641
[6]  
Bergweiler W, 2010, COMPUT METH FUNCT TH, V10, P455
[7]   KARPINSKA'S PARADOX IN DIMENSION 3 [J].
Bergweiler, Walter .
DUKE MATHEMATICAL JOURNAL, 2010, 154 (03) :599-630
[8]  
Devaney R.L., 1984, ERGOD THEOR DYN SYST, V4, P35
[9]  
DEVANEY RL, 1986, ERGOD THEOR DYN SYST, V6, P489
[10]  
Eremenko A.E., 1989, Ergodic Theory and Dynamical Systems, Banach Center Publications, V23, P339