Nonmonotone spectral methods for large-scale nonlinear systems

被引:175
作者
La Cruz, W
Raydan, M
机构
[1] Cent Univ Venezuela, Fac Ciencias, Dpto Computac, Caracas 1041A, Venezuela
[2] Cent Univ Venezuela, Fac Ingn, Dpto Elect Computac & Control, Caracas, Venezuela
关键词
spectral gradient method; nonmonotone line search; Krylov subspace methods;
D O I
10.1080/10556780310001610493
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The spectral gradient method has proved to be effective for solving large-scale optimization problems. In this work we extend the spectral approach to solve nonlinear systems of equations. We consider a strategy based on nonmonotone line search techniques to guarantee global convergence, and discuss implementation details for solving large-scale problems. We compare the performance of our new method with recent implementations of inexact Newton schemes based on Krylov subspace inner iterative methods for the linear systems. Our numerical experiments indicate that the spectral approach for solving nonlinear systems competes favorably with well-established numerical methods.
引用
收藏
页码:583 / 599
页数:17
相关论文
共 35 条
[1]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[2]   A globally convergent Newton-GMRES subspace method for systems of nonlinear equations [J].
Bellavia, S ;
Morini, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (03) :940-960
[3]   Estimation of the optical constants and the thickness of thin films using unconstrained optimization [J].
Birgin, EG ;
Chambouleyron, I ;
Martínez, JM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (02) :862-880
[4]   Restricted optimization: a clue to a fast and accurate implementation of the Common Reflection Surface Stack method [J].
Birgin, EG ;
Biloti, R ;
Tygel, M ;
Santos, LT .
JOURNAL OF APPLIED GEOPHYSICS, 1999, 42 (3-4) :143-155
[5]   Automatic differentiation and spectral projected gradient methods for optimal control problems [J].
Birgin, EG ;
Evtushenko, YG .
OPTIMIZATION METHODS & SOFTWARE, 1998, 10 (02) :125-146
[6]   CONVERGENCE THEORY OF NONLINEAR NEWTON-KRYLOV ALGORITHMS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON OPTIMIZATION, 1994, 4 (02) :297-330
[7]   HYBRID KRYLOV METHODS FOR NONLINEAR-SYSTEMS OF EQUATIONS [J].
BROWN, PN ;
SAAD, Y .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03) :450-481
[8]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[9]   Low Cost Optimization Techniques for Solving the Nonlinear Seismic Reflection Tomography Problem [J].
Castillo, Zaulida ;
Cores, Debora ;
Raydan, Marcos .
OPTIMIZATION AND ENGINEERING, 2000, 1 (02) :155-169
[10]   A fast and global two point low storage optimization technique for tracing rays in 2D and 3D isotropic media [J].
Cores, D ;
Fung, GM ;
Michelena, RJ .
JOURNAL OF APPLIED GEOPHYSICS, 2000, 45 (04) :273-287