Distribution of multinomial and q-binomial coefficients modulo p

被引:13
作者
Barbolosi, D
Grabner, PJ
机构
[1] UNIV AIX MARSEILLE 3, FAC SCI & TECH ST JEROME, URA CNRS 225, EQUIPE DSA, F-13013 MARSEILLE, FRANCE
[2] GRAZ TECH UNIV, INST MATH A, A-8010 GRAZ, AUSTRIA
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 1996年 / 7卷 / 02期
关键词
D O I
10.1016/0019-3577(96)85084-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the distribution of binomial and multinomial coefficients in the residue classes module a prime. It is well known that 'most of the' binomial coefficients are in the 0 residue class; we consider the distribution of the remaining values in the non-0 residue classes. Finally, we use similar methods to study Gaussian binomial coefficients module an irreducible polynomial over a finite field.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 12 条
[1]  
Dickson L. E., 1952, Divisibility and Primality, V1
[2]  
Fine N. J., 1947, Am. Math. Mon., V54, P589, DOI [10.2307/2304500, DOI 10.2307/2304500]
[3]   CONGRUENCE PROPERTIES OF ORDINARY AND Q-BINOMIAL COEFFICIENTS [J].
FRAY, RD .
DUKE MATHEMATICAL JOURNAL, 1967, 34 (03) :467-&
[4]   COMPLETELY Q-MULTIPLICATIVE FUNCTIONS - THE MELLIN TRANSFORM APPROACH [J].
GRABNER, PJ .
ACTA ARITHMETICA, 1993, 65 (01) :85-96
[5]  
HOWARD FT, 1993, FIBONACCI QUART, V31, P53
[6]   NUMBER OF MULTINOMIAL COEFFICIENTS DIVISIBLE BY A FIXED POWER OF A PRIME [J].
HOWARD, FT .
PACIFIC JOURNAL OF MATHEMATICS, 1974, 50 (01) :99-108
[7]  
Lidl R., 1986, INTRO FINITE FIELDS
[8]  
SINGMASTER D, 1974, J LOND MATH SOC, V8, P555
[9]  
SINGMASTER D, 1974, J LOND MATH SOC, V8, P549
[10]  
SINGMASTER D, 1974, J LOND MATH SOC, V8, P545