Biological and polymeric self-assembled hybrid systems: Structure and properties of thylakoid/polyelectrolyte complexes

被引:7
作者
Dementiev, AA [1 ]
Baikov, AA [1 ]
Ptushenko, VV [1 ]
Khomutov, GB [1 ]
Tikhonov, AN [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Dept Biophys, Moscow 119992, Russia
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES | 2005年 / 1712卷 / 01期
基金
俄罗斯基础研究基金会;
关键词
thylakoid membranes; electron transport; polyelectrolytes; layer-by-layer deposition; EPR;
D O I
10.1016/j.bbamem.2005.03.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A novel hybrid system composed of biological components and synthetic polymer, thylakoid/polycation complex, has been formed and studied. Effects of complex formation on the structure, electrostatics and functioning of thylakoid membranes have been examined. Thylakoids from bean leaves were used to form complexes with polycation polyallylamine hydrochloride (PAAH) in two systems: (i) thylakoid/polycation complexes formed in an aqueous bulk phase, and (ii) immobilized thylakoid/polycation planar complexes. Immobilized on a solid substrate surface, thylakoid/polycation complexes were prepared using layer-by-layer stepwise alternate adsorption technique, i.e., via the sequential alternate adsorption of thylakoids and polycation molecules. The morphology of built up structures was investigated by scanning electron microscopy. Light-induced electron transport in chloroplasts was studied by the electron paramagnetic resonance (EPR) method. Spin probe technique was employed to study the structural and electrostatic characteristics of thylakoid membranes. We have found that efficiency of light-induced electron transport in thylakoid membranes and membrane structure were not changed noticeably by PAAH binding to thylakoids in a wide range of PAAH concentrations. The data obtained indicate the physiologically-soft character of polycation interactions with thylakoid membranes and demonstrate effectiveness of interfacial self-assembly approach to fabrication of complex planar functional nanostructures from biological components and synthetic polymers. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 46 条
[1]   Molecular recognition in thylakoid structure and function [J].
Allen, JF ;
Forsberg, J .
TRENDS IN PLANT SCIENCE, 2001, 6 (07) :317-326
[2]   MEMBRANE-SURFACE CHARGES AND POTENTIALS IN RELATION TO PHOTOSYNTHESIS [J].
BARBER, J .
BIOCHIMICA ET BIOPHYSICA ACTA, 1980, 594 (04) :253-308
[3]  
Barber J., 1976, INTACT CHLOROPLAST, V1, P88
[4]  
Bobreshova ME, 1999, BIOFIZIKA+, V44, P813
[5]   Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification [J].
Boura, C ;
Menu, P ;
Payan, E ;
Picart, C ;
Voegel, JC ;
Muller, S ;
Stoltz, JF .
BIOMATERIALS, 2003, 24 (20) :3521-3530
[6]   ELECTRON-PARAMAGNETIC-RES DETERMINATION OF MEMBRANE-POTENTIALS [J].
CAFISO, DS ;
HUBBELL, WL .
ANNUAL REVIEW OF BIOPHYSICS AND BIOENGINEERING, 1981, 10 :217-244
[7]   Microencapsulation of uncharged low molecular weight organic materials by polyelectrolyte multilayer self-assembly [J].
Caruso, F ;
Yang, WJ ;
Trau, D ;
Renneberg, R .
LANGMUIR, 2000, 16 (23) :8932-8936
[8]   Influence of polyelectrolyte multilayer coatings on Forster resonance energy transfer between 6-carboxyfluorescein and rhodamine B-labeled particles in aqueous solution [J].
Caruso, F ;
Donath, E ;
Möhwald, H .
JOURNAL OF PHYSICAL CHEMISTRY B, 1998, 102 (11) :2011-2016
[9]   ESTIMATION OF MEMBRANE SURFACE-POTENTIAL AND CHARGE-DENSITY FROM PHASE-EQUILIBRIUM OF A PARAMAGNETIC AMPHIPHILE [J].
CASTLE, JD ;
HUBBELL, WL .
BIOCHEMISTRY, 1976, 15 (22) :4818-4831
[10]   Biomedical surface science: Foundations to frontiers [J].
Castner, DG ;
Ratner, BD .
SURFACE SCIENCE, 2002, 500 (1-3) :28-60