Wigner-Dyson statistics for a class of integrable models

被引:18
作者
Benet, L
Leyvraz, F
Seligman, TH
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[2] Ctr Int Ciencias AC, Cuernavaca 62131, Morelos, Mexico
[3] Univ Paris 11, Ctr Sci Orsay, LPTMS, F-91405 Orsay, France
来源
PHYSICAL REVIEW E | 2003年 / 68卷 / 04期
关键词
D O I
10.1103/PhysRevE.68.045201
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We construct an ensemble of second-quantized Hamiltonians with two bosonic degrees of freedom, whose members display with probability one Gaussian orthogonal ensemble (GOE) or Gaussian unitary ensemble (GUE) statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely, the boson number, and thus are integrable. To construct this ensemble we use some "reverse engineering" starting from the fact that n bosons in a two-level system with random interactions have an integrable classical limit by the old Heisenberg association of boson operators to actions and angles. By choosing an n-body random interaction and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the example.
引用
收藏
页码:452011 / 452013
页数:3
相关论文
共 22 条
[1]   Quantum chaos, irreversible classical dynamics, and random matrix theory [J].
Andreev, AV ;
Agam, O ;
Simons, BD ;
Altshuler, BL .
PHYSICAL REVIEW LETTERS, 1996, 76 (21) :3947-3950
[2]   Spectral properties of the k-body embedded Gaussian ensembles of random matrices for bosons [J].
Asaga, T ;
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
ANNALS OF PHYSICS, 2002, 298 (02) :229-247
[3]   Non-ergodic behaviour of the k-body embedded Gaussian random ensembles for bosons [J].
Asaga, T ;
Benet, L ;
Rupp, T ;
Weidenmüller, HA .
EUROPHYSICS LETTERS, 2001, 56 (03) :340-346
[4]   Integrability of interacting two-level boson systems [J].
Benet, L ;
Jung, C ;
Leyvraz, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (15) :L217-L222
[5]   Review of the k-body embedded ensembles of Gaussian random matrices [J].
Benet, L ;
Weidenmüller, HA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12) :3569-3593
[6]  
Berry M. V., 1984, Wave Particle Dualism. A Tribute to Louis de Broglie on his 90th Birthday. Proceedings of an International Symposium, P231
[8]   QUANTIZING A CLASSICALLY ERGODIC SYSTEM - SINAI BILLIARD AND THE KKR METHOD [J].
BERRY, MV .
ANNALS OF PHYSICS, 1981, 131 (01) :163-216
[9]   CHARACTERIZATION OF CHAOTIC QUANTUM SPECTRA AND UNIVERSALITY OF LEVEL FLUCTUATION LAWS [J].
BOHIGAS, O ;
GIANNONI, MJ ;
SCHMIT, C .
PHYSICAL REVIEW LETTERS, 1984, 52 (01) :1-4
[10]   ON THE CONNECTION BETWEEN QUANTIZATION OF NON-INTEGRABLE SYSTEMS AND STATISTICAL-THEORY OF SPECTRA [J].
CASATI, G ;
VALZGRIS, F ;
GUARNIERI, I .
LETTERE AL NUOVO CIMENTO, 1980, 28 (08) :279-282