A graph-based formulation for modeling macro-energy systems

被引:19
作者
Goeke, Leonard [1 ]
机构
[1] Berlin Univ Technol, Workgrp Infrastruct Policy WIP, Berlin, Germany
关键词
Macro-energy systems; Energy systems modeling; Open access modeling; Decarbonization; Renewable energy; Sector integration; POWER-SYSTEM; ELECTRICITY SYSTEMS; DECARBONIZATION; OPTIMIZATION; OSEMOSYS; TOOLS; GRIDS;
D O I
10.1016/j.apenergy.2021.117377
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Averting the impending harms of climate change requires to replace fossil fuels with renewables as a primary source of energy. Non-electric renewable potential being limited, this implies extending the use of electricity generated from wind and solar beyond the power sector, either by direct electrification or synthetic fuels. Modeling the transformation towards such an energy system is challenging, because it imposes to consider fluctuations of wind and solar and the manifold ways the demand side could adjust to these fluctuations. This paper introduces a graph-based method to formulate energy system models to address these challenges. By organizing sets in rooted trees, two features to facilitate modeling high shares of renewables and sector integration are enabled. First, the method allows the level of temporal and spatial detail to be varied by energy carrier. This enables modeling with a high level of detail and a large scope, while keeping models computationally tractable. Second, the degree to which energy carriers are substitutable when converted, stored, transported, or consumed can be modeled to achieve a detailed but flexible representation of sector integration. An application of the formulation demonstrates that the variation of temporal detail achieves an average reduction in computation time of 70%.
引用
收藏
页数:14
相关论文
共 41 条
[1]   A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement [J].
Bataille, Chris ;
Ahman, Max ;
Neuhoff, Karsten ;
Nilsson, Lars J. ;
Fischedick, Manfred ;
Lechtenboehmer, Stefan ;
Solano-Rodriquez, Baltazar ;
Denis-Ryan, Amandine ;
Stiebert, Seton ;
Waisman, Henri ;
Sartor, Oliver ;
Rahbar, Shahrzad .
JOURNAL OF CLEANER PRODUCTION, 2018, 187 :960-973
[2]   Is small beautiful? A framework for assessing decentralised electricity systems [J].
Bauknecht, Dierk ;
Funcke, Simon ;
Vogel, Moritz .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2020, 118
[3]   Impacts of heat sector transformation on Germany's power system through increased use of power-to-heat [J].
Bloess, Andreas .
APPLIED ENERGY, 2019, 239 :560-580
[4]   Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system [J].
Brown, T. ;
Schlachtberger, D. ;
Kies, A. ;
Schramm, S. ;
Greiner, M. .
ENERGY, 2018, 160 :720-739
[5]   Response to 'Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems' [J].
Brown, T. W. ;
Bischof-Niemz, T. ;
Blok, K. ;
Breyer, C. ;
Lund, H. ;
Mathiesen, B. V. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 92 :834-847
[6]   Power-to-X: Between Electricity Storage, e-Production, and Demand Side Management [J].
Burre, Jannik ;
Bongartz, Dominik ;
Bree, Luisa ;
Roh, Kosan ;
Mitsos, Alexander .
CHEMIE INGENIEUR TECHNIK, 2020, 92 (1-2) :74-84
[7]  
Conejo A. J., 2006, Decomposition techniques in mathematical programming: engineering and science applications
[8]   Leveraging Open-Source Tools for Collaborative Macro-energy System Modeling Efforts [J].
DeCarolis, Joseph F. ;
Jaramillo, Paulina ;
Johnson, Jeremiah X. ;
McCollum, David L. ;
Trutnevyte, Evelina ;
Daniels, David C. ;
Akin-Olcum, Gokce ;
Bergerson, Joule ;
Cho, Soolyeon ;
Choi, Joon-Ho ;
Craig, Michael T. ;
de Queiroz, Anderson R. ;
Eshraghi, Hadi ;
Galik, Christopher S. ;
Gutowski, Timothy G. ;
Haapala, Karl R. ;
Hodge, Bri-Mathias ;
Hoque, Simi ;
Jenkins, Jesse D. ;
Jenn, Alan ;
Johansson, Daniel J. A. ;
Kaufman, Noah ;
Kiviluoma, Juha ;
Lin, Zhenhong ;
MacLean, Heather L. ;
Masanet, Eric ;
Masnadi, Mohammad S. ;
McMillan, Colin A. ;
Nock, Destenie S. ;
Patankar, Neha ;
Patino-Echeverri, Dalia ;
Schively, Greg ;
Siddiqui, Sauleh ;
Smith, Amanda D. ;
Venkatesh, Aranya ;
Wagner, Gernot ;
Yeh, Sonia ;
Zhou, Yuyu .
JOULE, 2020, 4 (12) :2523-2526
[9]  
Diestel R., 2000, Graph theory
[10]   Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries [J].
Doucette, Reed T. ;
McCulloch, Malcolm D. .
ENERGY POLICY, 2011, 39 (02) :803-811