Finite element simulation of shaped ductile fiber pullout using a mixed cohesive zone/friction interface model

被引:46
作者
Tsai, JH [1 ]
Patra, A [1 ]
Wetherhold, R [1 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
关键词
fibres; fibre/matrix bond; fracture toughness; finite element analysis (FEA);
D O I
10.1016/j.compositesa.2004.10.025
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The fiber pullout test has long served as surrogate for estimating fracture toughness of fiber-matrix systems. In this paper, the quasi-static analysis of elastoplastic fiber pullout process is simulated by the finite element method based on an updated Lagrangian formulation. To approximate the non-linear behavior of the fiber-matrix interface, we propose a mixed 'cohesive' and 'Coulomb-friction' model. The use of such a model enables us to simulate the entire pullout process. A combination of von Mises yield criterion and associated flow rule is utilized as the constitutive model to describe the plasticity in the initially annealed copper-fiber. Through comparison with the experimental results from straight-fiber pullout, key parameters for describing the interface model are determined and the model is validated. The model is then applied to simulate the pullout of the 'nail-head' shaped fiber family. Simulation results are used to design an optimal shape of the head to maximize the pullout work. (c) 2004 Published by Elsevier Ltd.
引用
收藏
页码:827 / 838
页数:12
相关论文
共 25 条
[1]   Finite element analysis of the microdroplet test method using cohesive zone model of the fiber/matrix interface [J].
Sockalingam, Subramani ;
Dey, Moutushi ;
Gillespie, John W., Jr. ;
Keefe, Michael .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2014, 56 :239-247
[2]   A cohesive zone model incorporating a Coulomb friction law for fiber-reinforced composites [J].
Nian, Guodong ;
Li, Qiyang ;
Xu, Qiang ;
Qu, Shaoxing .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 157 :195-201
[3]   Vickers indentation crack propagation analysis and finite element simulation verification based on the cohesive zone model in silicon carbide ceramics [J].
Wang, Shaohui ;
Wang, Canglong ;
Shu, Yafeng ;
Gao, Zihao ;
Chen, Yupeng ;
Liu, Yiwen ;
Meng, Zhaocang ;
Wu, Haibo ;
Yang, Lei ;
Duan, Wenshan .
ENGINEERING FRACTURE MECHANICS, 2025, 323
[4]   Understanding the mechanical behavior of fiber/matrix interfaces during push-in tests by means of finite element simulations and a cohesive zone model [J].
Esque-de los Ojos, D. ;
Ghisleni, R. ;
Battisti, A. ;
Mohanty, G. ;
Michler, J. ;
Sort, J. ;
Brunner, A. J. .
COMPUTATIONAL MATERIALS SCIENCE, 2016, 117 :330-337
[5]   Characterizing cohesive zone model using a mixed-mode direct method [J].
Khoramishad, H. ;
Hamzenejad, M. ;
Ashofteh, R. S. .
ENGINEERING FRACTURE MECHANICS, 2016, 153 :175-189
[6]   Simulation of interface damage in metal matrix composites under off-axis loading using cohesive zone model [J].
Aghdam, M. M. ;
Hosseini, S. M. A. ;
Morsali, S. R. .
COMPUTATIONAL MATERIALS SCIENCE, 2015, 108 :42-47
[7]   Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2) [J].
Seok, Seungwook ;
Haikal, Ghadir ;
Ramirez, Julio A. ;
Lowes, Laura N. ;
Lim, Jeehee .
ENGINEERING STRUCTURES, 2020, 221
[8]   Numerical simulation of delamination growth in fiber reinforced polymer laminates using cohesive zone modeling [J].
Kumar, Millan ;
Kumar, Pramod ;
Bhadauria, Shailendra Singh .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2022, 29 (02) :213-229
[9]   Simulation of mixed-mode I/III stable tearing crack growth events using the cohesive zone model approach [J].
Chen, Xin ;
Deng, Xiaomin ;
Sutton, Michael A. ;
Zavattieri, Pablo .
INTERNATIONAL JOURNAL OF FRACTURE, 2014, 189 (01) :59-75
[10]   Analysis of automotive mixed-adhesive joints weakened by moist conditions: Experimental characterization and numerical simulation using cohesive zone model [J].
Zaeri, Ahmad Reza ;
Googarchin, Hamed Saeidi .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2019, 42 (04) :929-942