Interface model for non-equilibrium evaporation

被引:21
作者
Caputa, J. P. [1 ]
Struchtrup, Henning [1 ]
机构
[1] Univ Victoria, Dept Mech Engn, Victoria, BC V8W 2Y2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Liquid-vapor interface; Kinetic theory; Condensation coefficient; Accommodation coefficient; Onsager relations; CASIMIR RECIPROCITY RELATIONS; OPEN GASEOUS SYSTEMS; ARBITRARY RAREFACTION; KINETIC-THEORY; CONDENSATION; THERMODYNAMICS; COEFFICIENT;
D O I
10.1016/j.physa.2010.09.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
microscopic interface condition for condensing/evaporating interfaces is developed by combining a velocity dependent condensation probability [T. Tsuruta, H. Tanaka, T. Masuoka, Int. J. Heat Mass Transfer 42 (1999) 4107] and Maxwell type interface conditions with accommodation. Using methods from kinetic theory, macroscopic interface conditions for mass and energy transport across the phase boundary are derived. This model only applies to simple substances, where diffusive effects in the bulk phases are not present. The results are compared to classical non-equilibrium thermodynamics. The interface conditions are considered for the limit of small deviation from equilibrium, and the corresponding Onsager coefficients are computed. These results are useful as boundary conditions for non-equilibrium evaporation and condensation problems, as done previously by our group [M. Bond, H. Struchtrup, Phys. Rev. E 70 (2004) 061605]. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:31 / 42
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 2005, EQUILIBRIUM THERMODY
[2]  
[Anonymous], 2002, Relativistic boltzmann equation
[3]  
[Anonymous], 2008, Non-Equilibrium Thermodynamics of Heterogeneous Systems
[4]   SLOW EVAPORATION AND CONDENSATION [J].
BEDEAUX, D ;
HERMANS, LJF ;
YTREHUS, T .
PHYSICA A, 1990, 169 (02) :263-280
[5]  
Bird GA., 1994, Molecular Gas Dynamics and the Simulation of Gas Flows
[6]  
Bond M, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.061605
[7]   KINETIC-THEORY OF CONDENSATION AND EVAPORATION .2 [J].
CIPOLLA, JW ;
LANG, H ;
LOYALKA, SK .
JOURNAL OF CHEMICAL PHYSICS, 1974, 61 (01) :69-77
[8]  
de Groot S.R., 1984, NONEQUILIBRIUM THERM
[9]  
Hertz H., 1882, Ann. Phys., V17, DOI [10.1002/andp.18822531002https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.18822531002, DOI 10.1002/ANDP.18822531002HTTPS://ONLINELIBRARY.WILEY.COM/DOI/PDF/10.1002/ANDP.18822531002, 10.1002/andp.18822531002, DOI 10.1002/ANDP.18822531002]
[10]  
Knudsen M, 1915, ANN PHYS-BERLIN, V47, P697