Ionitronic manipulation of current-induced domain wall motion in synthetic antiferromagnets

被引:25
作者
Guan, Yicheng [1 ]
Zhou, Xilin [1 ]
Li, Fan [1 ]
Ma, Tianping [1 ]
Yang, See-Hun [1 ]
Parkin, Stuart S. P. [1 ]
机构
[1] Max Planck Inst Microstruct Phys, D-06120 Halle, Germany
基金
欧洲研究理事会;
关键词
MAGNETORESISTANCE; TORQUE;
D O I
10.1038/s41467-021-25292-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Synthetic anti-ferromagnets, where two ferromagnetic layers are coupled anti-ferromagnetically via a spacer, are known for their very large current-induced domain wall velocities. Here, Guan et al show that the velocity of the domain walls in synthetic anti-ferromagnetic nanowires can be tuned over a wide range due to reversible oxidization via ionic liquid gating. The current induced motion of domain walls forms the basis of several advanced spintronic technologies. The most efficient domain wall motion is found in synthetic antiferromagnetic (SAF) structures that are composed of an upper and a lower ferromagnetic layer coupled antiferromagnetically via a thin ruthenium layer. The antiferromagnetic coupling gives rise to a giant exchange torque with which current moves domain walls at maximum velocities when the magnetic moments of the two layers are matched. Here we show that the velocity of domain walls in SAF nanowires can be reversibly tuned by several hundred m/s in a non-volatile manner by ionic liquid gating. Ionic liquid gating results in reversible changes in oxidation of the upper magnetic layer in the SAF over a wide gate-voltage window. This changes the delicate balance in the magnetic properties of the SAF and, thereby, results in large changes in the exchange coupling torque and the current-induced domain wall velocity. Furthermore, we demonstrate an example of an ionitronic-based spintronic switch as a component of a potential logic technology towards energy-efficient, all electrical, memory-in-logic.
引用
收藏
页数:8
相关论文
共 27 条
[1]  
Bauer U, 2015, NAT MATER, V14, P174, DOI [10.1038/NMAT4134, 10.1038/nmat4134]
[2]   Magnetization vector manipulation by electric fields [J].
Chiba, D. ;
Sawicki, M. ;
Nishitani, Y. ;
Nakatani, Y. ;
Matsukura, F. ;
Ohno, H. .
NATURE, 2008, 455 (7212) :515-518
[3]   Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization [J].
Chiba, D. ;
Kawaguchi, M. ;
Fukami, S. ;
Ishiwata, N. ;
Shimamura, K. ;
Kobayashi, K. ;
Ono, T. .
NATURE COMMUNICATIONS, 2012, 3
[4]   Control of Multiple Magnetic Domain Walls by Current in a Co/Ni Nano-Wire [J].
Chiba, Daichi ;
Yamada, Gen ;
Koyama, Tomohiro ;
Ueda, Kohei ;
Tanigawa, Hironobu ;
Fukami, Shunsuke ;
Suzuki, Tetsuhiro ;
Ohshima, Norikazu ;
Ishiwata, Nobuyuki ;
Nakatani, Yoshinobu ;
Ono, Teruo .
APPLIED PHYSICS EXPRESS, 2010, 3 (07)
[5]   Nonvolatile Ionic Modification of the Dzyaloshinskii-Moriya Interaction [J].
Diez, L. Herrera ;
Liu, Y. T. ;
Gilbert, D. A. ;
Belmeguenai, M. ;
Vogel, J. ;
Pizzini, S. ;
Martinez, E. ;
Lamperti, A. ;
Mohammedi, J. B. ;
Laborieux, A. ;
Roussigne, Y. ;
Grutter, A. J. ;
Arenholtz, E. ;
Quarterman, P. ;
Maranville, B. ;
Ono, S. ;
El Hadri, M. Salah ;
Tolley, R. ;
Fullerton, E. E. ;
Sanchez-Tejerina, L. ;
Stashkevich, A. ;
Cherif, S. M. ;
Kent, A. D. ;
Querlioz, D. ;
Langer, J. ;
Ocker, B. ;
Ravelosona, D. .
PHYSICAL REVIEW APPLIED, 2019, 12 (03)
[6]   Highly Asymmetric Chiral Domain-Wall Velocities in Y-Shaped Junctions [J].
Garg, Chirag ;
Pushp, Aakash ;
Yang, See-Hun ;
Phung, Timothy ;
Hughes, Brian P. ;
Rettner, Charles ;
Parkin, Stuart S. P. .
NANO LETTERS, 2018, 18 (03) :1826-1830
[7]   Dramatic influence of curvature of nanowire on chiral domain wall velocity [J].
Garg, Chirag ;
Yang, See-Hun ;
Phung, Timothy ;
Pushp, Aakash ;
Parkin, Stuart S. P. .
SCIENCE ADVANCES, 2017, 3 (05)
[8]   Current-controlled magnetic domain-wall nanowire shift register [J].
Hayashi, Masamitsu ;
Thomas, Luc ;
Moriya, Rai ;
Rettner, Charles ;
Parkin, Stuart S. P. .
SCIENCE, 2008, 320 (5873) :209-211
[9]   Ni-Sn-Supported ZrO2 Catalysts Modified by Indium for Selective CO2 Hydrogenation to Methanol [J].
Hengne, Amol M. ;
Samal, Akshaya K. ;
Enakonda, Linga Reddy ;
Harb, Moussab ;
Gevers, Lieven E. ;
Anjum, Dalaver H. ;
Hedhili, Mohamed N. ;
Saih, Youssef ;
Huang, Kuo-Wei ;
Basset, Jean-Marie .
ACS OMEGA, 2018, 3 (04) :3688-3701
[10]  
Ikeda S, 2010, NAT MATER, V9, P721, DOI [10.1038/NMAT2804, 10.1038/nmat2804]