LOCAL DENSITY OF CAPUTO-STATIONARY FUNCTIONS IN THE SPACE OF SMOOTH FUNCTIONS

被引:12
作者
Bucur, Claudia [1 ]
机构
[1] Univ Milan, Dipartimento Matemat, Via Cesare Saldini 50, I-20100 Milan, Italy
关键词
Caputo stationary; fractional derivative; nonlocal operators;
D O I
10.1051/cocv/2016056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the Caputo fractional derivative and say that a function is Caputo-stationary if its Caputo derivative is zero. We then prove that any C-k ([0, 1]) function can be approximated in [0, 1] by a function that is Caputo-stationary in [0, 1], with initial point a < 0. Otherwise said, Caputo-stationary functions are dense in C-loc(k)( R).
引用
收藏
页码:1361 / 1380
页数:20
相关论文
共 10 条
[1]  
Abramowitz M., 1984, HDB MATH FUNCTIONS F, Vxiv, P44
[2]  
[Anonymous], 2006, THEORY APPL FRACTION, DOI DOI 10.1016/S0304-0208(06)80001-0
[3]  
[Anonymous], 1993, INTRO FRACTIONAL CA
[4]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[5]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[6]   Hitchhiker's guide to the fractional Sobolev spaces [J].
Di Nezza, Eleonora ;
Palatucci, Giampiero ;
Valdinoci, Enrico .
BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05) :521-573
[7]  
Dipierro S., 2017, J EUR MATH IN PRESS
[8]  
Dipierro S., 2014, J EUR MATH IN PRESS
[9]  
Samko A. A., 1993, Fractional Integrals andDerivatives: Theory and Applications
[10]  
Wheeden R. L., 1977, INTRO REAL ANAL