OBSERVABILITY OF N-DIMENSIONAL INTEGRO-DIFFERENTIAL SYSTEMS

被引:1
作者
Loreti, Paola [1 ]
Sforza, Daniela [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 03期
关键词
Coupled systems; convolution kernels; Fourier series; Ingham estimates; reachability; WAVE-EQUATION; CONTROLLABILITY;
D O I
10.3934/dcdss.2016026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of the paper is to show a reachability result for the solution of a multidimensional coupled Petrovsky and wave system when a non local term, expressed as a convolution integral, is active. Motivations to the study are in linear acoustic theory in three dimensions. To achieve that, we prove observability estimates by means of Ingham type inequalities applied to the Fourier series expansion of the solution.
引用
收藏
页码:745 / 757
页数:13
相关论文
共 17 条
[1]  
[Anonymous], 1993, MONOGR MATH
[2]  
[Anonymous], 1990, ENCY MATH APPL
[3]  
[Anonymous], 2005, SPRINGER MONOGR MATH
[4]   Dispersion and Attenuation for an Acoustic Wave Equation Consistent with Viscoelasticity [J].
Hanyga, A. .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2014, 22 (03)
[5]   Some trigonometrical inequalities with applications to the theory of series [J].
Ingham, AE .
MATHEMATISCHE ZEITSCHRIFT, 1936, 41 :367-379
[6]   Ingham-type theorems for vector-valued functions and observability of coupled linear systems [J].
Komornik, V ;
Loreti, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1999, 37 (02) :461-485
[7]  
Lagnese J., 1988, MODELLING ANAL CONTR
[8]   EXACT CONTROLLABILITY OF THE WAVE-EQUATION WITH NEUMANN BOUNDARY CONTROL [J].
LASIECKA, I ;
TRIGGIANI, R .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (03) :243-290
[9]  
LIONS J.-L., 1988, RECHERCHES MATH APPL, V2
[10]  
Lions J.L., 1988, CONTROLABILITE EXACT, V1