Quantum Tunneling Process for Double Well Potential

被引:7
作者
Wang, Lifei [1 ]
Zhang, Qin [1 ]
Xu, Feng [2 ]
Cui, Xiao-Dong [3 ]
Zheng, Yujun [3 ]
机构
[1] Shandong Jiaotong Univ, Sch Sci, Jinan 250357, Peoples R China
[2] Shaanxi Univ Technol, Sch Phys & Telecommun Engn, Hanzhong 723000, Peoples R China
[3] Shandong Univ, Sch Phys, Jinan 250100, Peoples R China
基金
美国国家科学基金会;
关键词
Quantum electronics - Quantum entanglement - Electron tunneling - Phase space methods;
D O I
10.1002/qua.24818
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Quantum tunneling effects of Gaussian wave packet in one- and two-dimensional double well potentials are investigated using quantum Liouville equation for time evolution of Wigner distribution rho(q, p, t) in phase space. It is shown that a trajectory-based solution of this problem can be constructed by the entangled trajectory ensemble simulating the evolving quantum state. Quantum effects arise in this approach as a breakdown of the statistical independence of the trajectory ensemble. (C) 2014 Wiley Periodicals, Inc.
引用
收藏
页码:208 / 215
页数:8
相关论文
共 27 条
[1]   Time-dependent schrodinger equation with Markovian outgoing wave boundary conditions: Applications to quantum tunneling dynamics and photoionization [J].
Chou, Chia-Chun ;
Wyatt, Robert E. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2013, 113 (01) :39-44
[2]   Simulation of quantum processes using entangled trajectory molecular dynamics [J].
Donoso, A ;
Zheng, YJ ;
Martens, CC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (10) :5010-5020
[3]   Classical trajectory-based approaches to solving the quantum Liouville equation [J].
Donoso, A ;
Martens, CC .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2002, 90 (4-5) :1348-1360
[4]   Solution of phase space diffusion equations using interacting trajectory ensembles [J].
Donoso, A ;
Martens, CC .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (24) :10598-10605
[5]   Quantum tunneling using entangled classical trajectories [J].
Donoso, A ;
Martens, CC .
PHYSICAL REVIEW LETTERS, 2001, 87 (22) :223202-223202
[6]  
Fukunaga K., 2013, Introduction to Statistical Pattern Recognition
[7]  
Goldstein H., 1980, Classical Mechanics
[8]   Tunneling decay of two interacting bosons in an asymmetric double-well potential: A spectral approach [J].
Hunn, Stefan ;
Zimmermann, Klaus ;
Hiller, Moritz ;
Buchleitner, Andreas .
PHYSICAL REVIEW A, 2013, 87 (04)
[9]   On the Brownian motion in a double-well potential in the overdamped limit [J].
Kalmykov, Yu. P. ;
Coffey, W. T. ;
Titov, S. V. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 377 (02) :412-420
[10]   Tunneling time in fluctuating symmetric double wells: Suppression and enhancement of tunneling by spatial symmetry-preserving perturbations [J].
Kar, Susmita ;
Bhattacharyya, S. P. .
CHEMICAL PHYSICS, 2011, 379 (1-3) :23-32