Classification of rings with genus one zero-divisor graphs

被引:55
作者
Wickham, Cameron [1 ]
机构
[1] Missouri State Univ, Dept Math, Springfield, MO 65897 USA
关键词
finite commutative ring; zero divisor; zero-divisor graph;
D O I
10.1080/00927870701713089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates properties of the zero-divisor graph of a commutative ring and its genus. In particular, we determine all isomorphism classes of finite commutative rings with identity whose zero-divisor graph has genus one.
引用
收藏
页码:325 / 345
页数:21
相关论文
共 22 条
[1]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[2]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[3]  
Anderson DF, 2001, LECT NOTES PURE APPL, V220, P61
[4]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[5]   ADDITIVITY OF GENUS OF A GRAPH [J].
BATTLE, J ;
HARARY, F ;
KODAMA, Y ;
YOUNGS, JWT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1962, 68 (06) :565-&
[6]   Planar zero-divisor graphs [J].
Belshoff, Richard ;
Chapman, Jeremy .
JOURNAL OF ALGEBRA, 2007, 316 (01) :471-480
[7]   RINGS WITH FEW ZERO DIVISORS [J].
CORBAS, B .
MATHEMATISCHE ANNALEN, 1969, 181 (01) :1-&
[8]   Rings of order p5 part I.: Nonlocal rings [J].
Corbas, B ;
Williams, GD .
JOURNAL OF ALGEBRA, 2000, 231 (02) :677-690
[9]   Rings of order p5 part II.: Local rings [J].
Corbas, B ;
Williams, GD .
JOURNAL OF ALGEBRA, 2000, 231 (02) :691-704
[10]  
Diestel R., 2000, GRAPH THEORY ELECT E