Two-View Monocular Depth Estimation by Optic-Flow-Weighted Fusion

被引:2
|
作者
Kaneko, Alex Masuo [1 ,2 ]
Yamamoto, Kenjiro [1 ,2 ]
机构
[1] Hitachi Ltd, Ctr Technol Innovat Mech Engn, Robot Res Dept, Hitachinaka, Ibaraki 3120034, Japan
[2] Hitachi Ltd, Res & Dev Grp, Hitachinaka, Ibaraki 3120034, Japan
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2019年 / 4卷 / 02期
关键词
Computer vision for automation; visual-based navigation; monocular depth estimation; flat surface model; low optic flow;
D O I
10.1109/LRA.2019.2893426
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Depth estimation with monocular cameras is a cheap and promising solution for autonomous vehicles and robots. Even though there are many approaches in the literature, the issue of estimating depth of objects with low optic flow (low parallax) still remains. This work proposes a new two-view monocular depth estimation method that estimates depths with only a monocular camera using two optic flow directions based on the Flat Surface Model, fusing them with optic flow as weights. The proposed method achieves an average depth estimation error of 3.68 m and a maximum error of 107.34 m, which are smaller than those obtained by traditional techniques (22.90 and 9815.44 m, respectively).
引用
收藏
页码:830 / 837
页数:8
相关论文
共 35 条
  • [1] Monocular Dense Reconstruction by Depth Estimation Fusion
    Chen, Tian
    Ding, Wendong
    Zhang, Dapeng
    Liu, Xilong
    PROCEEDINGS OF THE 30TH CHINESE CONTROL AND DECISION CONFERENCE (2018 CCDC), 2018, : 4460 - 4465
  • [2] Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference
    Li, Bo
    Dai, Yuchao
    He, Mingyi
    PATTERN RECOGNITION, 2018, 83 : 328 - 339
  • [3] Monocular Depth Estimation Based on Multi-Scale Depth Map Fusion
    Yang, Xin
    Chang, Qingling
    Liu, Xinglin
    He, Siyuan
    Cui, Yan
    IEEE ACCESS, 2021, 9 : 67696 - 67705
  • [4] CNNapsule: A Lightweight Network with Fusion Features for Monocular Depth Estimation
    Wang, Yinchu
    Zhu, Haijiang
    Liu, Mengze
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2021, PT I, 2021, 12891 : 507 - 518
  • [5] Radar Fusion Monocular Depth Estimation Based on Dual Attention
    Long, JianYu
    Huang, JinGui
    Wang, ShengChun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT I, 2022, 13338 : 166 - 179
  • [6] Monocular Depth Estimation Based on Dilated Convolutions and Feature Fusion
    Li, Hang
    Liu, Shuai
    Wang, Bin
    Wu, Yuanhao
    APPLIED SCIENCES-BASEL, 2024, 14 (13):
  • [7] Monocular depth estimation with multi-scale feature fusion
    Wang Q.
    Zhang S.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (05): : 7 - 12
  • [8] Gaussian Weighted Deep Modeling for Improved Depth Estimation in Monocular Images
    Jiang, Jianmin
    El-Shazly, Ehab H.
    Zhang, Xiaoyan
    IEEE ACCESS, 2019, 7 : 134718 - 134729
  • [9] Lightweight monocular depth estimation using a fusion-improved transformer
    Sui, Xin
    Gao, Song
    Xu, Aigong
    Zhang, Cong
    Wang, Changqiang
    Shi, Zhengxu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] FF-GAN: Feature Fusion GAN for Monocular Depth Estimation
    Jia, Ruiming
    Li, Tong
    Yuan, Fei
    PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020, 2020, 12305 : 167 - 179