Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control

被引:11
作者
Ruan, Xiaoli [1 ]
Wu, Ailong [1 ,2 ,3 ]
机构
[1] Hubei Normal Univ, Coll Math & Stat, Huangshi 435002, Peoples R China
[2] Xi An Jiao Tong Univ, Inst Informat & Syst Sci, Xian 710049, Shaanxi, Peoples R China
[3] Huazhong Univ Sci, Sch Automat, Wuhan 430074, Hubei, Peoples R China
关键词
multi-quasi-synchronization; fractional-order neural networks; comparison principle; pinning impulsive control; HYBRID PROJECTIVE SYNCHRONIZATION; COMPLEX DYNAMICAL NETWORKS; DIFFERENTIAL-EQUATIONS; TIME DELAYS; SYSTEMS; STABILITY;
D O I
10.1186/s13662-017-1417-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the collective dynamics of multi-quasi-synchronization of coupled fractional-order neural networks with delays. Using the pinning impulsive strategy, we design a novel controller to pin the coupled networks to realize the multi-quasi-synchronization. Based on the comparison principle and mathematical analysis, we derive some novel criteria of the multi-quasi-synchronization. Moreover, we discuss the effects of coupling strength and pinning control matrix. Finally, some simulation examples show the effectiveness of the presented results.
引用
收藏
页数:19
相关论文
共 44 条
[1]   Projective synchronization of fractional-order memristor-based neural networks [J].
Bao, Hai-Bo ;
Cao, Jin-De .
NEURAL NETWORKS, 2015, 63 :1-9
[2]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[3]  
Deng WH, 2007, NONLINEAR DYNAM, V48, P409, DOI [10.1007/s11071-006-9094-0, 10.1007/s11071 -006-9094-0]
[4]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659
[5]   On the Lyapunov theory for fractional order systems [J].
Gallegos, Javier A. ;
Duarte-Mermoud, Manuel A. .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 287 :161-170
[6]   Chaos generalized synchronization of coupled Mathieu-Van der Pol and coupled Duffing-Van der Pol systems using fractional order-derivative [J].
Giresse, Tene Alain ;
Crepin, Kofane Timoleon .
CHAOS SOLITONS & FRACTALS, 2017, 98 :88-100
[7]   Multisynchronization of Coupled Heterogeneous Genetic Oscillator Networks via Partial Impulsive Control [J].
He, Ding-Xin ;
Ling, Guang ;
Guan, Zhi-Hong ;
Hu, Bin ;
Liao, Rui-Quan .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (02) :335-342
[8]   Pinning-controlled synchronization of delayed neural networks with distributed-delay coupling via impulsive control [J].
He, Wangli ;
Qian, Feng ;
Cao, Jinde .
NEURAL NETWORKS, 2017, 85 :1-9
[9]   New aspects of the adaptive synchronization and hyperchaos suppression of a financial model [J].
Jajarmi, Amin ;
Hajipour, Mojtaba ;
Baleanu, Dumitru .
CHAOS SOLITONS & FRACTALS, 2017, 99 :285-296
[10]   APPLICATIONS OF FRACTIONAL CALCULUS TO THE THEORY OF VISCOELASTICITY [J].
KOELLER, RC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02) :299-307