EcoVis: visual analysis of industrial-level spatio-temporal correlations in electricity consumption

被引:2
|
作者
Xiao, Yong [1 ]
Zheng, Kaihong [2 ]
Lonapalawong, Supaporn [3 ]
Lu, Wenjie [3 ]
Chen, Zexian [3 ]
Qian, Bin [1 ]
Zhang, Tianye [3 ]
Wang, Xin [4 ]
Chen, Wei [3 ]
机构
[1] China Southern Power Grid, Elect Power Res Inst, Guangzhou 510663, Peoples R China
[2] China Southern Power Grid, Digital Grid Res Inst, Guangzhou 510663, Peoples R China
[3] Zhejiang Univ, State Key Lab CAD & CG, Hangzhou 310058, Peoples R China
[4] Zhejiang Univ, Sch Comp Sci, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金;
关键词
spatio-temporal data; electricity consumption; correlation analysis; visual analysis; visualization; ENERGY-CONSUMPTION; VISUALIZATION; EXPLORATION; COMPLEX; ANIMATION; ANALYTICS;
D O I
10.1007/s11704-020-0088-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Closely related to the economy, the analysis and management of electricity consumption has been widely studied. Conventional approaches mainly focus on the prediction and anomaly detection of electricity consumption, which fails to reveal the in-depth relationships between electricity consumption and various factors such as industry, weather etc.. In the meantime, the lack of analysis tools has increased the difficulty in analytical tasks such as correlation analysis and comparative analysis. In this paper, we introduce EcoVis, a visual analysis system that supports the industrial-level spatio-temporal correlation analysis in the electricity consumption data. We not only propose a novel approach to model spatio-temporal data into a graph structure for easier correlation analysis, but also introduce a novel visual representation to display the distributions of multiple instances in a single map. We implement the system with the cooperation with domain experts. Experiments are conducted to demonstrate the effectiveness of our method.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Visual analysis of air pollution spatio-temporal patterns
    Jiayang Li
    Chongke Bi
    The Visual Computer, 2023, 39 : 3715 - 3726
  • [22] Visual analytics of economic features for multivariate spatio-temporal GDP data
    Zhou, Zhiguang
    Li, Huihui
    Liu, Fang
    Liu, Yanan
    Huang, Chaogeng
    Tao, Yubo
    Lin, Hai
    Su, Weihua
    JOURNAL OF VISUALIZATION, 2018, 21 (02) : 337 - 350
  • [23] MotionGlyphs: Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior
    Cakmak, E.
    Schaefer, H.
    Buchmueller, J.
    Fuchs, J.
    Schreck, T.
    Jordan, A.
    Keim, D.
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 63 - 75
  • [24] Visual analytics for spatio-temporal air quality data
    Bachechi, Chiara
    Desimoni, Federico
    Po, Laura
    Martinez Casas, David
    2020 24TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV 2020), 2020, : 460 - 466
  • [25] Exploratory spatio-temporal analysis of linked statistical data
    Mijovic, Vuk
    Janev, Valentina
    Paunovic, Dejan
    Vranes, Sanja
    JOURNAL OF WEB SEMANTICS, 2016, 41 : 1 - 8
  • [26] Spatio-Temporal Analysis of Team Sports
    Gudmundsson, Joachim
    Horton, Michael
    ACM COMPUTING SURVEYS, 2017, 50 (02)
  • [27] Spatio-Temporal VLAD Encoding of Visual Events Using Temporal Ordering of the Mid-Level Deep Semantics
    Soltanian, Mohammad
    Amini, Sajjad
    Ghaemmaghami, Shahrokh
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (07) : 1769 - 1784
  • [28] Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views
    Fofonov, Alexey
    Molchanov, Vladimir
    Linsen, Lars
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (08) : 2037 - 2050
  • [29] A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams
    Sibolla, Bolelang H.
    Coetzee, Serena
    Van Zyl, Terence L.
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2018, 7 (12)
  • [30] Visual Analysis of Spatio-Temporal Event Predictions: Investigating the Spread Dynamics of Invasive Species
    Seebacher, Daniel
    Hauessler, Johannes
    Hundt, Michael
    Stein, Manuel
    Mueller, Hannes
    Engelke, Ulrich
    Keim, Daniel A.
    IEEE TRANSACTIONS ON BIG DATA, 2021, 7 (03) : 497 - 509