When Big data and cloud computing join forces together, several domains like: healthcare, disaster prediction and decision making become easier and much more beneficial to users in term of information gathering, although cloud computing will reduce time and cost of analyzing information for big data, it may harm the confidentiality and integrity of the sensitive data, for instance, in healthcare, when analyzing disease's spreading area, the name of the infected people must remain secure, hence the obligation to adopt a secure model that protect sensitive data from malicious users. Several case studies on the integration of big data in cloud computing, urge on how easier it would be to analyze and manage big data in this complex envronement. Companies must consider outsourcing their sensitive data to the cloud to take advantage of its beneficial resources such as huge storage, fast calculation, and availability, yet cloud computing might harm the security of data stored and computed in it (confidentiality, integrity). Therefore, strict paradigm must be adopted by organization to obviate their outsourced data from being stolen, damaged or lost. In this paper, we compare between the existing models to secure big data implementation in the cloud computing. Then, we propose our own model to secure Big Data on the cloud computing environement, considering the lifecycle of data from uploading, storage, calculation to its destruction.