Growth of solutions with L2(p +2)-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms

被引:3
作者
Choucha, Abdelbaki [1 ,2 ]
Hidan, Muajebah [3 ]
Cherif, Bahri [4 ]
Idris, Sahar Ahmed [5 ]
机构
[1] Univ El Oued, Dept Math, Fac Exact Sci, El Oued, Algeria
[2] Amar Teleji Laghouat Univ, Fac Sci, Dept Matter Sci, Laghouat, Algeria
[3] King Khalid Univ, Fac Sci, Math Dept, Abha 61471, Saudi Arabia
[4] Qassim Univ, Coll Sci & Arts, Dept Math, ArRass, Buraydah, Saudi Arabia
[5] King Khalid Univ, Coll Ind Engn, Abha 62529, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
关键词
viscoelastic equation; exponential growth; degenerate damping term; GENERAL DECAY; BLOW-UP; WAVE-EQUATION; EXISTENCE;
D O I
10.3934/math.2022025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the L2(p+2)-norm.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 50 条
[41]   Normalized solutions to the Kirchhoff equation with L2-subcritical or critical nonlinearities in R2 [J].
Hu, Jiaqing ;
Mao, Anmin .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02) :508-512
[42]   Global existence, nonexistence, and decay of solutions for a wave equation of p-Laplacian type with weak and p-Laplacian damping, nonlinear boundary delay and source terms [J].
Boumaza, Nouri ;
Gheraibia, Billel .
ASYMPTOTIC ANALYSIS, 2022, 129 (3-4) :577-592
[43]   Estimates for normal solutions of problems with zone controls in L2 for the wave equation [J].
M. M. Potapov .
Differential Equations, 2010, 46 :939-948
[44]   Generalized L2 solutions of mixed boundary value problems for the wave equation [J].
Znamenskaya, LN .
DIFFERENTIAL EQUATIONS, 2004, 40 (05) :723-730
[45]   Generalized L2 Solutions of Mixed Boundary Value Problems for the Wave Equation [J].
L. N. Znamenskaya .
Differential Equations, 2004, 40 :723-730
[46]   Generalized Solutions in L2 of the Second Boundary Value Problem for the Wave Equation [J].
L. N. Znamenskaya .
Differential Equations, 2004, 40 :583-590
[47]   Generalized solutions in L2 of the second boundary value problem for the wave equation [J].
Znamenskaya, LN .
DIFFERENTIAL EQUATIONS, 2004, 40 (04) :583-590
[48]   Blow-up of non-radial solutions for the L2 critical inhomogeneous NLS equation [J].
Cardoso, Mykael ;
Farah, Luiz Gustavo .
NONLINEARITY, 2022, 35 (08) :4426-4436
[49]   Some L2(R)-norm and L1(R)-norm decay estimates for Cauchy Timoshenko type systems with a frictional damping or an infinite memory [J].
Guesmia, Aissa ;
Messaoudi, Salim .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (01)
[50]   New Results on the Blow-up of Solutions in L2 at Finite Time ln T1* for a Damped Emden-Fowler Type Degenerate Wave Equation [J].
Zennir, Khaled ;
Georgiev, Svetlin G. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (02) :163-179