Growth of solutions with L2(p +2)-norm for a coupled nonlinear viscoelastic Kirchhoff equation with degenerate damping terms

被引:3
作者
Choucha, Abdelbaki [1 ,2 ]
Hidan, Muajebah [3 ]
Cherif, Bahri [4 ]
Idris, Sahar Ahmed [5 ]
机构
[1] Univ El Oued, Dept Math, Fac Exact Sci, El Oued, Algeria
[2] Amar Teleji Laghouat Univ, Fac Sci, Dept Matter Sci, Laghouat, Algeria
[3] King Khalid Univ, Fac Sci, Math Dept, Abha 61471, Saudi Arabia
[4] Qassim Univ, Coll Sci & Arts, Dept Math, ArRass, Buraydah, Saudi Arabia
[5] King Khalid Univ, Coll Ind Engn, Abha 62529, Saudi Arabia
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 01期
关键词
viscoelastic equation; exponential growth; degenerate damping term; GENERAL DECAY; BLOW-UP; WAVE-EQUATION; EXISTENCE;
D O I
10.3934/math.2022025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider a coupled nonlinear viscoelastic Kirchhoff equations with degenerate damping, dispersion and source terms. Under suitable hypothesis, we will prove that when the initial data are large enough (in the energy point of view), the energy grows exponentially and thus so the L2(p+2)-norm.
引用
收藏
页码:371 / 383
页数:13
相关论文
共 50 条
[21]   On a class of a coupled nonlinear viscoelastic Kirchhoff equations variable-exponents: global existence, blow up, growth and decay of solutions [J].
Choucha, Abdelbaki ;
Haiour, Mohamed ;
Boulaaras, Salah .
BOUNDARY VALUE PROBLEMS, 2024, 2024 (01)
[22]   Blow-up of solutions for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, delay and Balakrishnan-Taylor damping terms [J].
Alharbi, Asma ;
Choucha, Abdelbaki ;
Boulaaras, Salah .
FILOMAT, 2024, 38 (26) :9237-9247
[23]   Exponential Growth of Positive Initial Energy Solutions for Coupled Nonlinear Klein-Gordon Equations with Degenerate Damping and Source Terms [J].
Ouaoua, Amar ;
Maouni, Messaoud .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
[24]   Global nonexistence of solutions for a system of nonlinear viscoelastic wave equations with degenerate damping and source terms [J].
D. Ouchenane ;
Kh. Zennir ;
M. Bayoud .
Ukrainian Mathematical Journal, 2013, 65 :723-739
[25]   Global existence, nonexistence, and decay of solutions for a viscoelastic wave equation with nonlinear boundary damping and source terms [J].
Yu, Jiali ;
Shang, Yadong ;
Di, Huafei .
JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (07)
[26]   Blow-up of Solutions for Higher-order Nonlinear Kirchhoff-type Equation with Degenerate Damping and Source [J].
Kang, Yong Han ;
Park, Jong-Yeoul .
KYUNGPOOK MATHEMATICAL JOURNAL, 2021, 61 (01) :1-10
[27]   LOCAL EXISTENCE AND BLOW-UP OF SOLUTIONS FOR COUPLED VISCOELASTIC WAVE EQUATIONS WITH DEGENERATE DAMPING TERMS [J].
Piskin, Erhan ;
Ekinci, Fatma ;
Zennir, Khaled .
THEORETICAL AND APPLIED MECHANICS, 2020, 47 (01) :123-154
[28]   Exponential growth of positive initial-energy solutions of a system of nonlinear viscoelastic wave equations with damping and source terms [J].
Said-Houari, Belkacem .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (01) :115-133
[29]   Blow up of positive initial-energy solutions for coupled nonlinear wave equations with degenerate damping and source terms [J].
Piskin, Erhan .
BOUNDARY VALUE PROBLEMS, 2015,
[30]   Global existence and blow-up of solutions for nonlinear viscoelastic wave equation with degenerate damping and source [J].
Han, Xiaosen ;
Wang, Mingxin .
MATHEMATISCHE NACHRICHTEN, 2011, 284 (5-6) :703-716