Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing

被引:33
作者
Qu, Minglei [1 ,2 ]
Guo, Qilin [1 ,2 ]
Escano, Luis I. [1 ]
Clark, Samuel J. [3 ]
Fezzaa, Kamel [3 ]
Chen, Lianyi [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Mech Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[3] Argonne Natl Lab, X Ray Sci Div, Lemont, IL 60439 USA
来源
ADDITIVE MANUFACTURING LETTERS | 2022年 / 3卷
基金
美国国家科学基金会;
关键词
Keyhole pore; Additive manufacturing; Laser powder bed fusion; Synchrotron x-ray imaging; Nanoparticle; POROSITY FORMATION; DYNAMICS;
D O I
10.1016/j.addlet.2022.100068
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Keyhole pore formation is one of the most detrimental subsurface defects in the laser metal additive manufacturing process. However, effective ways to mitigate keyhole pore formation beyond tuning laser processing conditions during keyhole mode laser melting are still lacking. Here we report a novel approach to mitigate keyhole pore formation during laser powder bed fusion (LPBF) process by using stable nanoparticles. The critical keyhole depth for keyhole pore generation (i.e., the largest keyhole depth without keyhole pore formation) during LPBF of Al6061 increases from 246 & mu;m to 454 & mu;m (85% increase) after adding TiC nanoparticles. In-depth x-ray imaging studies and thermo-fluid dynamics simulation enable us to identify that two mechanisms work together to mitigate keyhole pore generation: (1) adding nanoparticles prevents the keyhole from collapsing by increasing the liquid viscosity to impede the protrusion development; (2) adding nanoparticles slows down the keyhole pore movement by increasing the liquid viscosity, resulting in the recapturing of the pore by the keyhole. We further demonstrate that adding TiC nanoparticles can also eliminate the keyhole fluctuation induced keyhole pore during LPBF of Al6061. Our research provides a potential way to mitigate keyhole pore formation for defect lean metal additive manufacturing.
引用
收藏
页数:7
相关论文
共 46 条
[21]   Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing [J].
King, Wayne E. ;
Barth, Holly D. ;
Castillo, Victor M. ;
Gallegos, Gilbert F. ;
Gibbs, John W. ;
Hahn, Douglas E. ;
Kamath, Chandrika ;
Rubenchik, Alexander M. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2014, 214 (12) :2915-2925
[22]   Effect of Laser-Matter Interaction on Molten Pool Flow and Keyhole Dynamics [J].
Kouraytem, Nadia ;
Li, Xuxiao ;
Cunningham, Ross ;
Zhao, Cang ;
Parab, Niranjan ;
Sun, Tao ;
Rollett, Anthony D. ;
Spear, Ashley D. ;
Tan, Wenda .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)
[23]   High-strength Damascus steel by additive manufacturing [J].
Kuernsteiner, Philipp ;
Wilms, Markus Benjamin ;
Weisheit, Andreas ;
Gault, Baptiste ;
Jaegle, Eric Aime ;
Raabe, Dierk .
NATURE, 2020, 582 (7813) :515-+
[24]   In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing [J].
Leung, Chu Lun Alex ;
Marussi, Sebastian ;
Atwood, Robert C. ;
Towrie, Michael ;
Withers, Philip J. ;
Lee, Peter D. .
NATURE COMMUNICATIONS, 2018, 9
[25]   Modeling temperature and residual stress fields in selective laser melting [J].
Li, Yingli ;
Zhou, Kun ;
Tan, Pengfei ;
Tor, Shu Beng ;
Chua, Chee Kai ;
Leong, Kah Fai .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2018, 136 :24-35
[26]   Fundamental Study on Laser Interactions With Nanoparticles-Reinforced Metals-Part I: Effect of Nanoparticles on Optical Reflectivity, Specific Heat, and Thermal Conductivity [J].
Ma, Chao ;
Zhao, Jingzhou ;
Cao, Chezheng ;
Lin, Ting-Chiang ;
Li, Xiaochun .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (12)
[27]   Fundamental Study on Laser Interactions With Nanoparticles-Reinforced Metals-Part II: Effect of Nanoparticles on Surface Tension, Viscosity, and Laser Melting [J].
Ma, Chao ;
Zhao, Jingzhou ;
Cao, Chezheng ;
Lin, Ting-Chiang ;
Li, Xiaochun .
JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2016, 138 (12)
[28]   Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ X-ray imaging [J].
Martin, Aiden A. ;
Calta, Nicholas P. ;
Hammons, Joshua A. ;
Khairallah, Saad A. ;
Nielsen, Michael H. ;
Shuttlesworth, Richard M. ;
Sinclair, Nicholas ;
Matthews, Manyalibo J. ;
Jeffries, Jason R. ;
Willey, Trevor M. ;
Lee, Jonathan R., I .
MATERIALS TODAY ADVANCES, 2019, 1
[29]   Dynamics of pore formation during laser powder bed fusion additive manufacturing [J].
Martin, Aiden A. ;
Calta, Nicholas P. ;
Khairallah, Saad A. ;
Wang, Jenny ;
Depond, Phillip J. ;
Fong, Anthony Y. ;
Thampy, Vivek ;
Guss, Gabe M. ;
Kiss, Andrew M. ;
Stone, Kevin H. ;
Tassone, Christopher J. ;
Weker, Johanna Nelson ;
Toney, Michael F. ;
van Buuren, Tony ;
Matthews, Manyalibo J. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[30]   Characterization of Process Efficiency Improvement in Laser Additive Manufacturing [J].
Matilainen, Ville ;
Piili, Heidi ;
Salminen, Antti ;
Syvanen, Tatu ;
Nyrhila, Olli .
8TH INTERNATIONAL CONFERENCE ON LASER ASSISTED NET SHAPE ENGINEERING (LANE 2014), 2014, 56 :317-326