Suppressing corrosion and hydrogen gas evolution in aluminum-air batteries via conductive nanocomposites

被引:16
作者
Deyab, M. A. [1 ]
Mohsen, Q. [2 ]
机构
[1] Egyptian Petr Res Inst EPRI, Cairo, Egypt
[2] Taif Univ, Dept Chem, Coll Sci, At Taif, Saudi Arabia
关键词
Al-air battery; Conductive nanocomposites; Hydrogen gas; Polyaniline; Carbon nanofibers; AA5052 ALLOY ANODE; PERFORMANCE EVALUATION; ALKALINE ELECTROLYTE; COMPLEX ADDITIVES; BEHAVIOR; INHIBITOR; PROTECTION; COATINGS;
D O I
10.1016/j.jpowsour.2021.230171
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alternative energy sources such as Al-air batteries appear to be promising. However, the formation of a passive layer and the evolution of hydrogen gas during battery operation reduce capacity retention and cyclability. To address these issues, we used conductive nanocomposites (PANI@CNF) based on polyaniline (PANI) and carbon nanofibers to coat the Al electrode. The findings show that the PANI@CNF nanocomposites are able to reduce corrosion in Al electrode and prevent 92% hydrogen gas evolution. A battery with Al/PANI@0.8CNF electrode produces a high capacity density (2730 mAh g(-1)) and a high energy density (4067 Wh kg(-1)) at a current density of 10 mA cm(-2). This study proposes a new strategy for improving the performance of Al-air batteries based on conductive nanocomposites.
引用
收藏
页数:6
相关论文
共 48 条