A Flexible 3D Multifunctional MgO-Decorated Carbon Foam@CNTs Hybrid as Self-Supported Cathode for High-Performance Lithium-Sulfur Batteries

被引:198
作者
Xiang, Mingwu [1 ]
Wu, Hao [1 ]
Liu, Heng [1 ]
Huang, Ju [1 ]
Zheng, Yifeng [1 ]
Yang, Li [1 ]
Jing, Peng [1 ]
Zhang, Yun [1 ]
Dou, Shixue [2 ]
Liu, Huakun [2 ]
机构
[1] Sichuan Univ, Coll Mat Sci & Engn, Dept Adv Energy Mat, Chengdu 610064, Peoples R China
[2] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Wollongong, NSW 2500, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
carbon foams; lithium sulfur batteries; MgO nanoparticles; nitrogen doping; self-supported cathodes; IMPROVED CYCLING STABILITY; ELECTRODE MATERIALS; CURRENT COLLECTORS; POLYSULFIDE; OXIDE; SEPARATOR; AEROGEL; SITES; ANODE;
D O I
10.1002/adfm.201702573
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the critical challenges to develop advanced lithium-sulfur (Li-S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen-doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N-doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as-built electrode with an ultrahigh sulfur loading of 14.4 mg cm(-2) manifests a high initial areal capacity of 10.4 mAh cm(-2), still retains 8.8 mAh cm(-2) (612 mAh g(-1) in gravimetriccapacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft-packaged Li-S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high-sulfur-loading Li-S batteries toward flexible energy-storage devices.
引用
收藏
页数:13
相关论文
共 56 条
[1]   A hollow carbon foam with ultra-high sulfur loading for an integrated cathode of lithium-sulfur batteries [J].
An, Yabin ;
Zhu, Qizhen ;
Hu, Longfeng ;
Yu, Shukai ;
Zhao, Qian ;
Xu, Bin .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (40) :15605-15611
[2]   Improved cycling stability of lithium-sulfur batteries using a polypropylene-supported nitrogen-doped mesoporous carbon hybrid separator as polysulfide adsorbent [J].
Balach, Juan ;
Jaumann, Tony ;
Klose, Markus ;
Oswald, Steffen ;
Eckert, Juergen ;
Giebeler, Lars .
JOURNAL OF POWER SOURCES, 2016, 303 :317-324
[3]   Polyamidoamine dendrimer-based binders for high-loading lithium-sulfur battery cathodes [J].
Bhattacharya, Priyanka ;
Nandasiri, Manjula I. ;
Lv, Dongping ;
Schwarz, Ashleigh M. ;
Darsell, Jens T. ;
Henderson, Wesley A. ;
Tomalia, Donald A. ;
Liu, Jun ;
Zhang, Ji-Guang ;
Xiao, Jie .
NANO ENERGY, 2016, 19 :176-186
[4]   A Flexible Nanostructured Paper of a Reduced Graphene Oxide-Sulfur Composite for High- Performance Lithium-Sulfur Batteries with Unconventional Configurations [J].
Cao, Jun ;
Chen, Chen ;
Zhao, Qing ;
Zhang, Ning ;
Lu, Qiongqiong ;
Wang, Xinyu ;
Niu, Zhiqiang ;
Chen, Jun .
ADVANCED MATERIALS, 2016, 28 (43) :9629-+
[5]   A New Type of Multifunctional Polar Binder: Toward Practical Application of High Energy Lithium Sulfur Batteries [J].
Chen, Wei ;
Qian, Tao ;
Xiong, Jie ;
Xu, Na ;
Liu, Xuejun ;
Liu, Jie ;
Zhou, Jinqiu ;
Shen, Xiaowei ;
Yang, Tingzhou ;
Chen, Yu ;
Yan, Chenglin .
ADVANCED MATERIALS, 2017, 29 (12)
[6]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25
[7]   Lithium-Sulfur Battery Cable Made from Ultralight, Flexible Graphene/Carbon Nanotube/Sulfur Composite Fibers [J].
Chong, Woon Gie ;
Huang, Jian-Qiu ;
Xu, Zheng-Long ;
Qin, Xianying ;
Wang, Xiangyu ;
Kim, Jang-Kyo .
ADVANCED FUNCTIONAL MATERIALS, 2017, 27 (04)
[8]   A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
ACS NANO, 2016, 10 (11) :10462-10470
[9]   Hierarchical sulfur electrodes as a testing platform for understanding the high-loading capability of Li-S batteries [J].
Chung, Sheng-Heng ;
Chang, Chi-Hao ;
Manthiram, Arumugam .
JOURNAL OF POWER SOURCES, 2016, 334 :179-190
[10]   Functionalized Boron Nitride Nanosheets/Graphene Interlayer for Fast and Long-Life Lithium-Sulfur Batteries [J].
Fan, Ye ;
Yang, Zhi ;
Hua, Wuxing ;
Liu, Dan ;
Tao, Tao ;
Rahman, Md Mokhlesur ;
Lei, Weiwei ;
Huang, Shaoming ;
Chen, Ying .
ADVANCED ENERGY MATERIALS, 2017, 7 (13)