A Deep Neural Network Approach for Online Topology Identification in State Estimation

被引:31
|
作者
Gotti, Davide [1 ]
Amaris, Hortensia [1 ]
Ledesma, Pablo [1 ]
机构
[1] Univ Carlos III Madrid, Dept Elect Engn, Madrid 28911, Spain
关键词
Network topology; Topology; State estimation; Training; Neurons; Switches; Measurement uncertainty; Topology identification; deep neural network; state estimation; bad data detection and identification;
D O I
10.1109/TPWRS.2021.3076671
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a network topology identification (TI) method based on deep neural networks (DNNs) for online applications. The proposed TI DNN utilizes the set of measurements used for state estimation to predict the actual network topology and offers low computational times along with high accuracy under a wide variety of testing scenarios. The training process of the TI DNN is duly discussed, and several deep learning heuristics that may be useful for similar implementations are provided. Simulations on the IEEE 14-bus and IEEE 39-bus test systems are reported to demonstrate the effectiveness and the small computational cost of the proposed methodology.
引用
收藏
页码:5824 / 5833
页数:10
相关论文
共 50 条
  • [21] A fast data-driven topology identification method for dynamic state estimation applications
    Gotti, Davide
    Ledesma, Pablo
    Amaris, Hortensia
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [22] Simultaneous Robust State Estimation, Topology Error Processing, and Outage Detection for Unbalanced Distribution Systems
    Soltani, Zahra
    Ma, Shanshan
    Khorsand, Mojdeh
    Vittal, Vijay
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2023, 38 (03) : 2018 - 2034
  • [23] State Estimation with Identification of Erroneous Network Parameters
    Ghimire, Sulav
    Gonzalez-Castellanos, Alvaro
    Lukicheva, Irina
    Pozo, David
    2020 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2020,
  • [24] An adaptive neural online estimation approach of harmonic components
    Beltran-Carbajal, F.
    Tapia-Olvera, R.
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 186
  • [25] Network-Based Approach to Identify Criticalities in State Estimation
    Mantesso Coimbra, Andrei
    Stacchini de Souza, Julio Cesar
    Do Coutto Filho, Milton Brown
    Augusto, Andre Abel
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2021, 36 (04) : 3394 - 3405
  • [26] Fault Identification-based Voltage Sag State Estimation Using Artificial Neural Network
    Liao, Huilian
    Anani, Nader
    SUSTAINABILITY IN ENERGY AND BUILDINGS 2017, 2017, 134 : 40 - 47
  • [27] Online Joint Topology Identification and Signal Estimation From Streams With Missing Data
    Zaman, Bakht
    Lopez-Ramos, Luis Miguel
    Beferull-Lozano, Baltasar
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 691 - 704
  • [28] State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickshon N. T.
    Hannan, Mahammad A.
    Lipu, Molla S. Hossain
    Sahari, Khairul S. M.
    Ker, Pin Jern
    Muttaqi, Kashem M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 5565 - 5574
  • [29] State-of-Charge Estimation of Li-ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickson N. T.
    Hannan, M. A.
    Lipu, M. S. Hossain
    Sahari, K. S. M.
    Ker, P. J.
    Muttaqi, K. M.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [30] Distribution Network Topology Identification with Graph Transformer Neural Network
    Zhao, Zixuan
    Qiao, Ji
    Li, Jiateng
    Shi, Mengjie
    Wang, Xiaohui
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1580 - 1585