Supramolecular Copolymerization Strategy for Realizing the Broadband White Light Luminescence Based on N-Deficient Porous Graphitic Carbon Nitride (g-C3N4)

被引:66
作者
Tang, Wenhua [1 ]
Tian, Ying [1 ]
Chen, BoWen [1 ]
Xu, Yayan [1 ]
Li, Bingpeng [1 ]
Jing, Xufeng [2 ]
Zhang, Junjie [1 ]
Xu, Shiqing [1 ]
机构
[1] China Jiliang Univ, Inst Photoelect Mat & Devices, Hangzhou 310018, Peoples R China
[2] China Jiliang Univ, Inst Optoelect Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
N-deficient porous g-C3N4; supramolecular copolymerization; narrow band gap; white light; broadband luminescence;
D O I
10.1021/acsami.9b19338
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The N-deficient porous g-C3N4 with broadband white light emission was constructed by supramolecular copolymerization design, which combined organic copolymers cyanuric acid and 2,4,6-triaminopyrimidine with melamine upon the mixture gas environment of (95%)N-2/(5%)H-2. Herein, we achieved great breakthrough in narrowing the band gap of g-C3N4 from 2.64 to 1.39 eV. Furthermore, in contrast to pristine g-C3N4, we demonstrated that the emission wavelengths of N-deficient porous g-C3N4 can be tuned from narrow blue to broadband white range, where the optimal white light coordinate position is (0.297, 0.345). The prepared N-deficient porous g-C3N4 overcomes the limitation of the narrow adjusting range of optical properties while using conventional g-C3N4 and makes it more promising for applications in solid-state displays.
引用
收藏
页码:6396 / 6406
页数:11
相关论文
共 72 条
[51]  
Dong G., Jacobs D.L., Zang L., Wang C., Carbon Vacancy Regulated Photoreduction of NO to N<sub>2</sub> over Ultrathin g-C<sub>3</sub>N<sub>4</sub> Nanosheets, Appl. Catal., B, 218, pp. 515-524, (2017)
[52]  
Soto G., Samano E.C., Machorro R., Farias M.H., Cota-Araiza L., Study of Composition and Bonding Character of CNx Films, Appl. Surf. Sci., 183, pp. 246-258, (2001)
[53]  
Liu Q., Wang X., Yang Q., Zhang Z., Fang X., Mesoporous g-C<sub>3</sub>N<sub>4</sub> Nanosheets Prepared by Calcining a Novel Supramolecular Precursor for High-Efficiency Photocatalytic Hydrogen Evolution, Appl. Surf. Sci., 450, pp. 46-56, (2018)
[54]  
Ho W., Zhang Z., Xu M., Zhang X., Wang X., Huang Y., Enhanced Visible-Light-Driven Photocatalytic Removal of NO: Effect on Layer Distortion on g-C<sub>3</sub>N<sub>4</sub> by H<sub>2</sub> Heating, Appl. Catal., B, 179, pp. 106-112, (2015)
[55]  
Niu P., Yin L.C., Yang Y.Q., Liu G., Cheng H.M., Increasing the Visible Light Absorption of Graphitic Carbon Nitride (Melon) Photocatalysts by Homogeneous Self-Modification with Nitrogen Vacancies, Adv. Mater., 26, pp. 8046-8052, (2014)
[56]  
Niu P., Liu G., Cheng H.-M., Nitrogen Vacancy-Promoted Photocatalytic Activity of Graphitic Carbon Nitride, J. Phys. Chem. C, 116, pp. 11013-11018, (2012)
[57]  
Cui H., Gu Z., Chen X., Lin L., Wang Z., Dai X., Yang Z., Liu L., Zhou R., Dong M., Stimulating Antibacterial Activities of Graphitic Carbon Nitride Nanosheets with Plasma Treatment, Nanoscale, 11, pp. 18416-18425, (2019)
[58]  
Yu H., Shi R., Zhao Y., Bian T., Zhao Y., Zhou C., Waterhouse G.I.N., Wu L.-Z., Tung C.-H., Zhang T., Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution, Adv. Mater., 29, (2017)
[59]  
Chen X., Liu L., Yu P.Y., Mao S.S., Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science, 331, pp. 746-750, (2011)
[60]  
Sun T., Lu M., Band-Structure Modulation of SrTiO<sub>3</sub> by Hydrogenation for Enhanced Photoactivity, Appl. Phys. A: Mater. Sci. Process., 108, pp. 171-175, (2012)