Supramolecular Copolymerization Strategy for Realizing the Broadband White Light Luminescence Based on N-Deficient Porous Graphitic Carbon Nitride (g-C3N4)

被引:66
作者
Tang, Wenhua [1 ]
Tian, Ying [1 ]
Chen, BoWen [1 ]
Xu, Yayan [1 ]
Li, Bingpeng [1 ]
Jing, Xufeng [2 ]
Zhang, Junjie [1 ]
Xu, Shiqing [1 ]
机构
[1] China Jiliang Univ, Inst Photoelect Mat & Devices, Hangzhou 310018, Peoples R China
[2] China Jiliang Univ, Inst Optoelect Technol, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
N-deficient porous g-C3N4; supramolecular copolymerization; narrow band gap; white light; broadband luminescence;
D O I
10.1021/acsami.9b19338
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The N-deficient porous g-C3N4 with broadband white light emission was constructed by supramolecular copolymerization design, which combined organic copolymers cyanuric acid and 2,4,6-triaminopyrimidine with melamine upon the mixture gas environment of (95%)N-2/(5%)H-2. Herein, we achieved great breakthrough in narrowing the band gap of g-C3N4 from 2.64 to 1.39 eV. Furthermore, in contrast to pristine g-C3N4, we demonstrated that the emission wavelengths of N-deficient porous g-C3N4 can be tuned from narrow blue to broadband white range, where the optimal white light coordinate position is (0.297, 0.345). The prepared N-deficient porous g-C3N4 overcomes the limitation of the narrow adjusting range of optical properties while using conventional g-C3N4 and makes it more promising for applications in solid-state displays.
引用
收藏
页码:6396 / 6406
页数:11
相关论文
共 72 条
[1]  
Sommerdijk J.L., Verstegen J.M.P.J., Bril A., Luminescence of MeFX: Eu<sup>2+</sup> (Me = Sr, Ba
[2]  
X = Cl, Br), J. Lumin., 8, pp. 502-506, (1974)
[3]  
Wang W., Yang P., Cheng Z., Hou Z., Li C., Lin J., Patterning of Red, Green, and Blue Luminescent Films Based on CaWO<sub>4</sub>:Eu<sup>3+</sup>, CaWO<sub>4</sub>:Tb<sup>3+</sup>, and CaWO<sub>4</sub> Phosphors via Microcontact Printing Route, ACS Appl. Mater. Interfaces, 3, pp. 3921-3928, (2011)
[4]  
Choi K.J., Park J.K., Kim K.N., Kim C.H., Kim H.K., Phosphor-Conversion White Light Emitting Diode Using InGaN Near-Ultraviolet Chip, Solid State Phenom., 124-126, pp. 499-502, (2007)
[5]  
Dai P.-P., Li C., Zhang X.-T., Xu J., Chen X., Wang X.-L., Jia Y., Wang X., Liu Y.-C., A single Eu<sup>2+</sup>-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes, Light: Sci. Appl., 5, (2016)
[6]  
Mao Y.M.Z., Zhu C.Z.Y., Gan L., Zeng Y., Xu F.X.F., Wang Y., Tian H., Li J., Wang J.W.D., Tricolor Emission Ca<sub>3</sub>Si<sub>2</sub>O<sub>7</sub>:Ln (Ln═Ce, Tb, Eu) Phosphors for Near-UV White Light-Emitting-Diode, J. Lumin., 134, pp. 148-153, (2013)
[7]  
Li B., Annadurai G., Liang J., Sun L., Wang S., Sun Q., Huang X., Lu<sup>3+</sup> Doping Induced Photoluminescence Enhancement in Novel High-Efficiency Ba<sub>3</sub>Eu(BO<sub>3</sub>)<sub>3</sub> Red Phosphors for Near-UV-Excited Warm-White LEDs, RSC Adv, 8, pp. 33710-33716, (2018)
[8]  
Zhang H., Zhou P., Xiao H., Leng J., Tao R., Wang X., Xu J., Xu X., Liu Z., Toward High-Power Nonlinear Fiber Amplifier, High Power Laser Sci. Eng., 6, (2018)
[9]  
Alonso E., Sherman A.M., Wallington T.J., Everson M.P., Field F.R., Roth R., Kirchain R.E., Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies, Environ. Sci. Technol., 46, pp. 3406-3414, (2012)
[10]  
Li Y.L., Li P.P., Wang J.S., Yang Y.L., Yao W.Q., Wei Z., Wu J.S., Yan X.X., Xu X.F., Liu Y.H., Zhu Y.F., Water Soluble Graphitic Carbon Nitride with Tunable Fluorescence for Boosting Broad-Response Photocatalysis, Appl. Catal. B-Environ., 225, pp. 519-529, (2018)