Dehydrogenation, disproportionation and transfer hydrogenation reactions of formic acid catalyzed by molybdenum hydride compounds

被引:77
作者
Neary, Michelle C. [1 ]
Parkin, Gerard [1 ]
机构
[1] Columbia Univ, Dept Chem, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
ASYMMETRIC TRANSFER HYDROGENATION; TRANSITION-METAL-COMPLEXES; CARBON BOND FORMATION; IONIC HYDROGENATIONS; DIHYDROGEN COMPLEXES; LIGAND COOPERATION; STORAGE MATERIAL; AQUEOUS-SOLUTION; C1; ALDEHYDES; WATER;
D O I
10.1039/c4sc03128h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The cyclopentadienyl molybdenum hydride compounds, (CpMo)-Mo-R(PMe3)(3-x)(CO)(x)H (Cp-R - Cp, Cp*; x - 0, 1, 2 or 3), are catalysts for the dehydrogenation of formic acid, with the most active catalysts having the composition (CpMo)-Mo-R(PMe3)(2)(CO) H. The mechanism of the catalytic cycle is proposed to involve (i) protonation of the molybdenum hydride complex, (ii) elimination of H-2 and coordination of formate, and (iii) decarboxylation of the formate ligand to regenerate the hydride species. NMR spectroscopy indicates that the nature of the resting state depends on the composition of the catalyst. For example, (i) the resting states for the CpMo(CO)(3)H and CpMo(PMe3)(CO)(2)H systems are the hydride complexes themselves, (ii) the resting state for the CpMo(PMe3)(3)H system is the protonated species [CpMo(PMe3)(3)H-2](+), and (iii) the resting state for the CpMo(PMe3)(2)(CO)H system is the formate complex, CpMo(PMe3)(2)(CO)(kappa(1)-O2CH), in the presence of a high concentration of formic acid, but CpMo(PMe3)(2)(CO)H when the concentration of acid is low. While CO2 and H-2 are the principal products of the catalytic reaction induced by (CpMo)-Mo-R(PMe3)(3-x)(CO)(x)H, methanol and methyl formate are also observed. The generation of methanol is a consequence of disproportionation of formic acid, while methyl formate is a product of subsequent esterification. The disproportionation of formic acid is a manifestation of a transfer hydrogenation reaction, which may also be applied to the reduction of aldehydes and ketones. Thus, CpMo(CO)(3)H also catalyzes the reduction of a variety of ketones and aldehydes to alcohols by formic acid, via a mechanism that involves ionic hydrogenation.
引用
收藏
页码:1859 / 1865
页数:7
相关论文
共 115 条
  • [1] 4-LEGGED PIANO STOOL MOLYBDENUM(II) COMPOUNDS WITHOUT CARBONYL LIGANDS .1. SYNTHESIS, PROPERTIES, AND CHLORIDE SUBSTITUTION-REACTIONS OF (ETA-5-C5R5)MOCL(PME3)3 (R = H, ME) AND X-RAY CRYSTAL-STRUCTURE OF [CPMOCL(PME3)3]+PF6-
    ABUGIDEIRI, F
    KELLAND, MA
    POLI, R
    RHEINGOLD, AL
    [J]. ORGANOMETALLICS, 1992, 11 (03) : 1303 - 1311
  • [2] TRIMETHYLPHOSPHANE AND HYBRIDOCARBONYL HALF-SANDWICH COMPLEXES OF CHROMIUM, MOLYBDENUM AND TUNGSTEN - A COMPARISON OF C5H5, C5ME5 AND AN ISOELECTRIC 6E--OXYGEN TRIPOD LIGAND
    ALT, HG
    ENGELHARDT, HE
    KLAUI, W
    MULLER, A
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1987, 331 (03) : 317 - 327
  • [3] Pentabenzylcyclopentadienyl molybdenum and tungsten hydrides: Syntheses, structures and electrochemistry of [MHCpBz(CO)2(L)] (L = CO, PMe3, PPh3)
    Antunes, M. Augusta
    Namorado, Sonia
    de Azevedo, Cristina G.
    Lemos, M. Amelia
    Duarte, M. Teresa
    Ascenso, Jose R.
    Martins, Ana M.
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2010, 695 (09) : 1328 - 1336
  • [4] Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation
    Appel, Aaron M.
    Bercaw, John E.
    Bocarsly, Andrew B.
    Dobbek, Holger
    DuBois, Daniel L.
    Dupuis, Michel
    Ferry, James G.
    Fujita, Etsuko
    Hille, Russ
    Kenis, Paul J. A.
    Kerfeld, Cheal A.
    Morris, Robert H.
    Peden, Charles H. F.
    Portis, Archie R.
    Ragsdale, Stephen W.
    Rauchfuss, Thomas B.
    Reek, Joost N. H.
    Seefeldt, Lance C.
    Thauer, Rudolf K.
    Waldrop, Grover L.
    [J]. CHEMICAL REVIEWS, 2013, 113 (08) : 6621 - 6658
  • [5] METALLORGANIC LEWIS-ACIDS .27. METALLORGANIC COMPOUNDS WITH ANIONS OF FLUOROSULFURIC ACID, AS WELL AS OF PERFLUORINATED SULFURIC AND CARBOXYLIC-ACIDS
    APPEL, M
    SCHLOTER, K
    HEIDRICH, J
    BECK, W
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1987, 322 (01) : 77 - 88
  • [6] Catalytic Hydrogenation of Carbon Dioxide to Formic Acid
    Behr, Arno
    Nowakowski, Kristina
    [J]. CO2 CHEMISTRY, 2014, 66 : 223 - 258
  • [7] BIANCHINI C, 1991, GAZZ CHIM ITAL, V121, P543
  • [8] Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst
    Boddien, Albert
    Mellmann, Doerthe
    Gaertner, Felix
    Jackstell, Ralf
    Junge, Henrik
    Dyson, Paul J.
    Laurenczy, Gabor
    Ludwig, Ralf
    Beller, Matthias
    [J]. SCIENCE, 2011, 333 (6050) : 1733 - 1736
  • [9] Hydrogen Storage in Formic Acid - Amine Adducts
    Boddien, Albert
    Gaertner, Felix
    Mellmann, Doerthe
    Sponholz, Peter
    Junge, Henrik
    Laurenczy, Gabor
    Beller, Matthias
    [J]. CHIMIA, 2011, 65 (04) : 214 - 218
  • [10] Iron-Catalyzed Hydrogen Production from Formic Acid
    Boddien, Albert
    Loges, Bjorn
    Gaertner, Felix
    Torborg, Christian
    Fumino, Koichi
    Junge, Henrik
    Ludwig, Ralf
    Beller, Matthias
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (26) : 8924 - 8934