Synthesis and Quantitative Analysis of Plasma-Targeted Metabolites of Catechin and Epicatechin

被引:23
作者
Blount, Jack W. [1 ]
Redan, Benjamin W. [2 ]
Ferruzzi, Mario G. [2 ,3 ]
Reuhs, Bradley L. [2 ]
Cooper, Bruce R. [6 ]
Harwood, John S. [7 ,8 ]
Shulaev, Vladimir [1 ]
Pasinetti, Giulio [4 ,5 ]
Dixon, Richard A. [1 ]
机构
[1] Univ N Texas, Dept Biol Sci, Denton, TX 76203 USA
[2] Purdue Univ, Dept Nutr Sci, W Lafayette, IN 47907 USA
[3] Purdue Univ, Dept Food Sci, W Lafayette, IN 47907 USA
[4] Mt Sinai Sch Med, Dept Psychiat, New York, NY 10029 USA
[5] James J Peters Vet Affairs Med Ctr, Bronx, NY USA
[6] Purdue Univ, Bindley Biosci Ctr Metabolite Profiling Facil, W Lafayette, IN 47907 USA
[7] Purdue Univ, Purdue Interdept NMR Facil, W Lafayette, IN 47907 USA
[8] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
catechin; glucuronosylation; O-methylation; phase II metabolites; semisynthesis; structure determination; two-site validation; (-)-EPICATECHIN METABOLITES; MATRIX; BIOAVAILABILITY; PROCYANIDINS; FLAVAN-3-OLS; POLYPHENOLS; INGESTION; EXCRETION; BRAIN;
D O I
10.1021/jf505922b
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Grape seed polyphenolic extract (GSPE) rich in the flavan-3-ols (+)-catechin and (-)-epicatechin beneficially modulates Alzheimer's Disease phenotypes in animal models. The parent molecules in the extract are converted to a series of methylated and glucuronidated derivatives. To fully characterize these metabolites and establish a robust quantitative assay of their levels in biological fluids, we have implemented a partial synthetic approach utilizing chemical methylation followed by enzymatic glucuronidation. Liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to assign unequivocal structures to the compounds. An analytical method using solid-phase extraction and LC-MS/MS in selective reaction monitoring mode (SRM) was validated for their quantitation in plasma. These studies provide a basis for improvements in future work on the bioavailability, metabolism, and mechanism of action of metabolites derived from dietary flavan-3-ols in a range of interventions.
引用
收藏
页码:2233 / 2240
页数:8
相关论文
共 27 条
[1]  
Ishikawa T., Suzukawa M., Ito T., Yoshida H., Ayaori M., Nishiwaki M., Yonemura A., Hara Y., Nakamura H., Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification, Am. J. Clin. Nutr., 66, pp. 261-266, (1997)
[2]  
Guo W., Kong E., Meydani M., Dietary polyphenols, inflammation, and cancer, Nutr. Cancer, 61, pp. 807-810, (2009)
[3]  
Dixon R.A., Natural products and disease resistance, Nature, 411, pp. 843-847, (2001)
[4]  
Wang J., Ferruzzi M.G., Ho L., Blount J., Janle E., Arrieta-Cruz I., Sharma V., Cooper B., Lobo J., Simon J.E., Zhang C., Cheng A., Qian X., Pavlides C., Dixon R.A., Pasinetti G.M., Brain-targeted proanthocyanidin metabolites for Alzheimers disease treatment, J. Neurosci., 32, pp. 5144-5150, (2012)
[5]  
Wang J., Ho L., Zhao W., Ono K., Rosensweig C., Chen L., Humala N., Teplow D.B., Pasinetti G.M., Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimers disease, J. Neurosci., 28, pp. 6388-6392, (2008)
[6]  
Sharma V., Zhang C., Pasinetti G.M., Dixon R.A., Fractionation of grape seed proanthocyanidins for bioactivity assessment, Recent Advances in Phytochemistry: Biological Activity of Phytochemicals, 41, pp. 33-46, (2010)
[7]  
Blount J.W., Ferruzzi M.G., Raftery D., Pasinetti G.M., Dixon R.A., Enzymatic synthesis of substituted epicatechins for bioactivity studies in neurological disorders, Biochem. Biophys. Res. Commun., 417, pp. 457-461, (2011)
[8]  
Ciric A., Prosen H., Jelikic-Stankov M., Aurlevic P., Evaluation of matrix effect in determination of some bioflavonoids in food samples by LC-MS/MS method, Talanta, 99, pp. 780-790, (2012)
[9]  
Gonzalez-Manzano S., Gonzalez-Paramas A., Santos-Buelga C., Duenas M., Preparation and characterization of catechin sulfates, glucuronides, and methylethers with metabolic interest, J. Agric. Food Chem., 57, pp. 1231-1238, (2009)
[10]  
Baba S., Osakabe N., Natsume M., Muto Y., Takizawa T., Terao J., In vivo comparison of the bioavailability of (+)-catechin, (-)-epicatechin and their mixture in orally administered rats, J. Nutr., 131, pp. 2885-2891, (2001)