A STOCHASTIC PONTRYAGIN MAXIMUM PRINCIPLE ON THE SIERPINSKI GASKET

被引:0
作者
Liu, Xuan [1 ]
机构
[1] 30 FL Two Int Finance Ctr, Nomura Int, Hong Kong, Peoples R China
关键词
Sierpinski gasket; BSDEs; stochastic maximum principle;
D O I
10.1137/17M1113606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider stochastic control problems on the Sierpinski gasket. An order comparison lemma is derived using heat kernel estimate for Brownian motion on the gasket. Using the order comparison lemma and techniques of backward stochastic differential equations (BSDEs), we establish a Pontryagin stochastic maximum principle for these control problems. It turns out that the stochastic maximum principle on the Sierpinski gasket involves two necessity equations in contrast to its counterpart on Euclidean spaces. This effect is due to singularity between the Hausdorff measure and the energy dominant measure on the gasket, which is a common feature shared by many fractal spaces. The linear regulator problems on the gasket is also considered as an example.
引用
收藏
页码:4288 / 4308
页数:21
相关论文
共 10 条
[1]  
Ausloos M, 2002, EMPIRICAL SCIENCE OF FINANCIAL FLUCTUATIONS, P62
[2]   Complex system analysis of market return percolation model on Sierpinski carpet lattice fractal [J].
Dong Yanfang ;
Wang Jun .
JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2014, 27 (04) :743-759
[3]  
Fleming W. H., 1975, Springer Science Business Media, V1, DOI [10.1007/978-1-4612-6380-7, DOI 10.1007/978-1-4612-6380-7]
[4]  
Fukushima M., 2010, DEGRUYTER STUD MATH, V19
[5]  
Kigami J., 2001, CAMBRIDGE TRACTS MAT, V143, DOI [10.1017/CBO9780511470943, DOI 10.1017/CBO9780511470943]
[6]   DIRICHLET FORMS ON FRACTALS AND PRODUCTS OF RANDOM MATRICES [J].
KUSUOKA, S .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1989, 25 (04) :659-680
[7]   Backward problems for stochastic differential equations on the Sierpinski gasket [J].
Liu, Xuan ;
Qian, Zhongmin .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2018, 128 (10) :3387-3418
[8]  
Mandelbrot B.B., 1997, Fractals and scaling in finance, DOI DOI 10.1007/978-1-4757-2763-0
[9]   A GENERAL STOCHASTIC MAXIMUM PRINCIPLE FOR OPTIMAL-CONTROL PROBLEMS [J].
PENG, SG .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1990, 28 (04) :966-979
[10]  
Yong J., 1999, Applications of Mathematics (New York), DOI [DOI 10.1007/978-1-4612-1466-3, 10.1007/978-1-4612-1466-3]